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Abstract

We describe how inflation, the act of mapping a 2D silhouette to
a 3D region, can be applied in two disparate problems to offer in-
sight and improvement: silhouette part segmentation and image-
based material transfer. To demonstrate this, we introduce Puffball,
a novel inflation technique, which achieves similar results to exist-
ing inflation approaches – including smoothness, robustness, and
scale and shift-invariance – through an exceedingly simple and ac-
cessible formulation. The part segmentation algorithm avoids many
of the pitfalls of previous approaches by finding part boundaries on
a canonical 3-D shape rather than in the contour of the 2-D shape;
the algorithm gives reliable and intuitive boundaries, even in cases
where traditional approaches like the Minima rule are misled. To
demonstrate it’s effectiveness, we present data in which subjects
prefer Puffball’s segmentations to more traditional Minima-rule-
based segmentations across several categories of silhouettes. The
texture transfer algorithm utilizes Puffball’s estimated shape infor-
mation to produce visually pleasing and realistically synthesized
surface textures with no explicit knowledge of either underlying
shape.

Keywords: object recognition, texture, lighting, shading and tex-
tures
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1 Introduction

Mapping a two-dimensional silhouette to a three-dimensional re-
gion – a task referred to as inflation – has been widely used in the
design of sketch interfaces, such as the Teddy system, to create a
smooth three-dimensional shape from a sketched outline [Alexe
et al. 2004; Igarishi et al. 1999; Karpenko et al. 2002; Tai et al.
2004]; it has also been integrated with user input in systems tack-
ling the problem of single-view reconstruction [Oswald et al. 2009;
Prasad et al. 2006; Terzopoulos et al. 1987; Terzopoulus and Witkin
1988; Zhang et al. 2002]. Beyond these applications, inflation of-
fers a convenient way to move between the two-dimensional and
three-dimensional domains, and the results can often be intuitive as
humans already comprehend a strong relationship between silhou-
ettes and three-dimensional shapes [Tse 2002].
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Figure 1: The grassfire height function. Iteratively eroding the
contour of the shape yields a sequence of smaller shapes. The sum
of these shapes is the grassfire height function. The ridge along the
top of this function marks the medial axis of the shape.

The grassfire height function, proposed by Blum [1967], can be
thought of as a simple form of inflation. The silhouette is repeatedly
eroded, resulting in a sequence of smaller and smaller silhouettes;
these silhouettes can be summed over time to yield a height function
on the interior points of the original silhouette, where the height at
a point is equal to the distance to the nearest edge (see Figure 1).
Blum, of course, was not solving the problem of inflation, but rather
calculating the medial axis transform, or MAT, in an effort to create
a perceptually relevant skeletal shape descriptor.

The grassfire function forms the basis of many popular methods of
creating beveled shapes in images, such as the Bevel and Emboss
operation in Adobe Photoshop. A silhouette, such as the pair of
Bs in Figure 2a, is passed through the grassfire function to give
a beveled three-dimensional shape (Figure 2b). This shape can
then be passed through a point-nonlinearity to give an appealing,
rounded shape; but the result is scale-dependent, so the inflation of
the smaller B is not simple a scaled-down version of the larger B
(Figure 2c). The two Bs can be scaled properly if they are passed
through different point non-linearities (Figure 2d), but in many sit-
uations a more desirable inflation approach is one which is inher-
ently scale-invariant, and doesn’t depend on post-hoc normaliza-
tions. Some existing approaches to inflation, including that used in
the Teddy system, achieve this inherent scale-invariance.

In this paper, we discuss two open problems where an intuitive,
scale-invariant inflation tool can offer insight. The first is segmenta-
tion of two-dimensional silhouettes into parts; the second is image-
based material transfer, which we accomplish as a pseudo-shape-
based texture transfer. We also introduce a new method for scale-
invariant silhouette inflation, which we call Puffball. It is impor-
tant to note that many existing inflation techniques, though power-
ful, require a carefully crafted mix of computational, empirical and
heuristic tools to function as desired. Puffball, on the other hand,
has the advantage of being extremely simple to define and imple-
ment, making it an ideal candidate as a general-purpose inflation
tool. We will formally define Puffball, and then describe the role
of inflation in these two applications and explain how Puffball is
applied to these problems in detail.

The results we describe for these two applications are not uniquely
dependent on Puffball; any sufficiently intuitive scale-invariant in-
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Figure 2: A bevel-inspired inflation approach. (a) Two similar
B silhouettes. (b) The grassfire height function of silhouette 2a.
A cross-section of the height function at the level marked by the
hashes is shown in the inset. (c) Passing the grassfire height func-
tion through a non-linearity can yield a circular cross-section in
one shape, but not both shapes simultaneously. (d) To get scale-
invariance, the two Bs must be passed through different point non-
linearities.

flation technique will work equally well. However, we have used
Puffball inflation for both problems, because of its straightforward
definition and ease of implementation.

2 Definition of Puffball Inflation

At the core of Puffball inflation is the principle: anywhere you can
place a circle, place a sphere. In fact, this principle can fully de-
scribe the output of Puffball inflation; in equation form, the Puffball
inflation I of a silhouette S can be written:

I(S) =
⋃
{B3(p, r) | B2(p, r) ⊂ S} (1)

where B3(p, r) is the spherical ball centered on point p with radius
r, and B2(p, r) is the circular region centered on p with radius r
contained in the plane of S. The set of such circles, however, is
massive: at any interior point of S, infinitely many circles centered
on that point lie entirely within S. Thus Equation 1 is an elegant
but impractical approach to silhouette inflation. Fortunately, the
process can be greatly accelerated by noting that

B2(p1, r1) ⊂ B2(p2, r2)⇒ B3(p1, r1) ⊂ B3(p2, r2)

So, in calculating the Puffball volume, we need only consider those
circles not contained in any larger circle which is also contained in
S; that is, we need only consider the maximal circles of S. The cen-
ters and radii of the maximal circles of a silhouette S form the me-
dial axis transform, or MAT, of the silhouette. As mentioned above,
the MAT can be calculated by locating the ridges of the grassfire
height function; this leads us to an alternative – and much more
practical – definition of Puffball inflation:

I(S) =
⋃
{B3(p, r) | (p, r) ∈ MAT(S)} (2)

Figure 3: Output of Puffball inflation for several simple shapes.

Box 1 contains the MATLAB code implementing the algorithm; our
implementation takes a binary image as input and gives a height
map image as output. Note that we do not calculate the union of
spheres by simply taking the maximum; instead we use a soft max-
imum achieved by adding the exponential of each of the component
spheres, and then taking a logarithm of the resulting sum. If a raw
maximum is used, small numerical errors in the calculation of the
grassfire height function (unavoidable in a discrete image) result
in unsightly and perceptually inconsistent creases; the soft maxi-
mum eliminates these creases, while having a negligible effect on
the overall shape of the output.

Our discrete implementation of Puffball contains only one param-
eter, a scale parameter implicit in the soft-max technique; the con-
tinuous definition of Puffball in equation 2 has no parameters what-
soever. For the remainder of this paper, we have used Puffball as
implemented in Box 1, with no parameter changes of any kind, so
its behavior is as intuitive as possible. Fortunately, we have found

Figure 4: (a,b,c) Results of published inflation techniques, from (a)
Terzopoulos et al. [1987], (b) Igarishi et al. [2001], and (c) Alexe
et al. [2004]. (d,e,f) Results of Puffball inflation on the same inputs.
All three results are succesfully replicated.



function h = Puffball(mask)
% CALCULATE GRASSFIRE HEIGHT FUNCTION %
% A 3x3-tap filter to smoothly erode an anti-aliased edge
fil = [0.1218 0.4123 0.1218; 0.4123 0.9750 0.4123; ...

0.1218 0.4123 0.1218]/1.2404;
nmask = double(mask);
surf = zeros(size(mask));
while ˜isempty(find(nmask,1))

surf = surf+nmask/1.67; % Each iteration erodes the edge .6 pixels
nmaskpad = padarray(nmask,[1 1],’replicate’);
nmaskpad = conv2(nmaskpad,fil,’same’)-1.4241;
nmask = max(min(nmaskpad(2:end-1,2:end-1),1),0);

end

% LOCATE THE MEDIAL AXIS %
[dx dy] = gradient(surf);
dsurf = sqrt(dx.ˆ2+dy.ˆ2);
% Medial axis points have a grassfire gradient measurably less than 1
matr = bwmorph(dsurf<0.958&surf>2,’skel’,Inf).*surf;

% TAKE THE UNION (SOFT-MAX) OF MAXIMAL SPHERES %
[X Y] = meshgrid(1:size(mask,2),1:size(mask,1));
h = ones(size(mask));
[y x] = find(matr);
for i = 1:length(f)

r = matr(y(i),x(i))ˆ2 - (X-y(i)).ˆ2 - (Y-x(i)).ˆ2;
h(r>0) = h(r>0)+exp(sqrt(r(r>0)));

end
h = log(h);

end

Box 1: MATLAB code implementing Puffball inflation.

Puffball works extremely well as it is, right “out of the box.”

As Figure 3 shows, Puffball performs intuitively on a wide range
of simple inputs: a circle maps to a sphere, an ellipse maps to a
prolate ellipsoid, etc. Figure 4 shows inflation results from sev-
eral published inflation techniques. Terzopoulos et al. [1987; 1988]
perform their inflation by wrapping a virtual elastic sheet around
a user-provided axis, which is then iteratively deformed to match
the bounding contour of the given silhouette. Igarishi et al. [1999]
propose building an inflation around central axis structure similar
to the medial axis; the shape is constructed by stiching together
semicircular ribs built out from this central axis. Alexe et al. [2004]
build on that work by using the same central axis structure to de-
fine a carefully optimized sum of spherical potential functions on
3D space, the level surface of which yields an intuitive inflation.
Despite the disparate nature of these approaches, and the differ-
ences in their stated goals (Terzopoulos et al. [1987; 1988] hoped
to model veridical 3D shape perception and reconstruction, while
Igarishi et al [1999] and Alexe et al. [2004] proposed their methods
as shape-sketching tools), as the figure shows, Puffball successfully
replicates all three results. Puffball is inherently scale invariant,
as shown in Figures 5a and 5b. Puffball can also take inputs of
arbitrary complexity and topology; Figures 5c and 5d show the re-
sults on an arbitrary silhouette generated by thresholding random
low-pass noise. For physically-inspired inflation approaches, such
as those using deformable surfaces [Karpenko and Hughes 2006;
Pentland 1990; Terzopoulos et al. 1987; Terzopoulus and Witkin
1988], this image would require considerable pre-processing, as the
surface to be optimized must have the same topology as the final
output. No such processing is required for Puffball.

It is also worth noting that Puffball is unique among inflation ap-
proaches as it makes no use of traditional 3D representation tools
like triangle or polygonal meshes; every operation of Puffball’s im-

plementation occurs in the image domain, a fact which makes it
much easier to understand and implement and sets it apart from the
existing inflation literature. A triangle mesh could of course be de-
rived from the height map output by Puffball, but we have found in
the applications that follow that operating in the image domain is
often far simpler.

We do not claim that Puffball is the last word in inflation, or a fully
accurate model of human intuition about the relationship between
2D and 3D shape. For example, note how in Figure 5d, the shape
contains noticeable bulges and creases. These are not the result of
improper setting of the implicit soft-max parameter, but inherent ef-
fects of Puffball inflation. In addition, while most human observers
interpret symmetric contours as bounding surfaces of revolution,
Puffball make no such prediction. These limitations could almost
certainly be overcome by increasing the flexibility and sophistica-
tion of the underlying algorithm. But for us, Puffball’s greatest
strength has been its simplicity, so we have tried to investigate its
potential as it is, with no optimizations or added complexity.

3 Applications of Inflation

3.1 Silhouette Part Segmentation

Parsing silhouettes into parts is a classic vision problem. Hoff-
man and Richards [1987] propose an approach to silhouette part
segmentation utilizing minima of concave curvature, based on the
observation – later confirmed psychophysically [Braunstein et al.
1989; DeWinter and Wagemans 2006] – that human-generated part
boundaries tend to terminate at or near such minima. Based on this
2D Minima rule, several researchers have devised more complete
systems to parse silhouettes using curvature minima [Singh et al.
1999; Siddiqi and Kimia 1995; Siddiqi et al. 1996]; but the 2D Min-



Figure 5: (a) An offset annulus. (b) The Puffball inflation of
5a. Both the wide and narrow bends of the resulting inflation
have circular cross-section, demonstrating a deep level of inherent
scale-invariance in Puffball inflation. (c) A complex, random mask
achieved by thresholding low-pass noise. (d) Puffball successfully
inflates the mask despite multiple separate components and the in-
put extending outside the image domain.

ima Rule must be augmented by significant number of additional
rules to generate consistently intuitive segmentations. Several have
observed that medial axis structures can offer more robust insights
into the perceptual structure of contours and silhouettes [Feldman
and Singh 2006; Froyen et al. 2010].

Hoffman and Richards’ 2D Minima Rule is derived from con-
siderations of 3D shapes, that is, the part boundaries of a three-
dimensional region are indicated by loci of minimal principal cur-
vature on the surface of that region. This Three-Dimensional Min-
ima rule is less ambiguous and more complete than the 2D Min-
ima rule, and suggests an alternative application of the Minima
rule to silhouette part segmentation. If one can map a silhouette
to a smooth three-dimensional region, and locate the Minima-Rule-
based boundaries on the surface of that region, one can project the
resulting segments back into two dimensions to get a segmentation
of the original silhouette. We find that a scale-invariant inflation
like Puffball yields 3D shape information that supports intuitive
segmentation.

Figure 6 depicts the Puffball segmentation process. First, the sil-
houette to be segmented is inflated using Puffball. According to
the 3D Minima Rule, part boundaries are located along loci of min-
imal principal curvature, which are visibly evident in Figure 6b.
However, rather than locating the full loci, a simpler approach is to
only consider points along the top of the shape; more accurately,
these are the points where the gradient in the direction of the most
convex principal curvature is zero. Points of minimal principal cur-
vature along the top of the shape consistently occur at the center of
reasonable part boundaries (see Figure 6c). Extending these points
to lines across the shape gives the Puffball-based part boundaries,
which yield a perceptually intuitive segmentation of the silhouette
(Figure 6d).

Figure 7 describes the advantages this approach confers over tra-
ditional 2D Minima Rule-based approaches. As shown in 7b, to
segment both the index and middle finger from the palm, two part
boundaries must terminate at the same curvature minimum, be-

Figure 6: The Puffball segmentation process. (a) An initial sil-
houette. (b) The Puffball inflation. (c) Points of maximal principal
curvature. (d) The resulting segmentation.

tween the two fingers. If only curvature minima are measured, how-
ever, this cannot be predicted, as it cannot be known whether two
part-lines terminate at any given boundary. Also, any part bound-
ary at the base of the index finger will have a curvature minimum
at only one endpoint, making it even more difficult to identify. A
2D Minima rule-based approach offers no clear way to locate both
boundaries. However, in the Puffball inflation of the shape, both
boundaries are clearly distinguishable as zones of negative princi-
pal curvature (Figrure 7c); hence, Puffball segmentation gives an
intuitive result (Figure 7d). Further results are shown in Figure 8.

To evaluate this segmentation approach, a pilot experiment was run
in which subjects on Amazon Mechanical Turk evaluated Puffball
segmentations in comparison with two alternative algorithms. Puff-
ball and our best effort implementations of the Necks and Limbs
algorithm [Siddiqi and Kimia 1995] and the Shortcut Rule [Singh
et al. 1999] were run on twenty-four silhouettes, eight each from
three classical part segmentation categories: animals, hand tools,
and human poses. Example segmentations of these stimuli are
shown in Figure 9. In the experiment, the Mechanical Turk sub-
ject was presented with the original silhouette, as well as two seg-

Figure 7: (a) A silhouette with a clear part structure. (b) The 2D
Minima Rule is insufficient for these two boundaries. (c,d) Puffball
segmentation yields the appropriate parsing.



Figure 8: Contrasting the Minima rule and inflation based ap-
proaches. (a,b) As the curvatures of the contours of silhouettes
(a) and (b) are identical, the Minima rule must either include part
boundary endpoints in both silhouettes or neither. Regardless of
how these endpoints are corresponded, they yield non-intuitive re-
sults. Inflation-based segmentation, however, evaluates these sil-
houettes very differently, as does our visual system. (c) A zig shape.
Because a curvature minimum is present at either corner of the
”zig”, the simplest Minima rule-based part boundary is diagonally
between them. But this seems incongruous the perceptual struc-
ture of the shape, which is much more similar to the part prediction
made by our approach.

Puffball vs. Necks and Limbs
# Trials Puffball Pref. Proportion

Animals 320 222 0.694 (**)
Tools 320 195 0.609 (**)

Humans 320 218 0.681 (**)
Total 960 635 0.661

Puffball vs. The Shortcut Rule
# Trials Puffball Pref. Proportion

Animals 320 163 0.509
Tools 320 179 0.559 (*)

Humans 320 209 0.653 (**)
Total 960 551 0.574 (**)

Table 1: Proportion of trials in which Puffball segmentation was
preferred over Necks and Limbs segmentation, and the Shortcut
Rule. (*) indicates p < 0.025, (**) indicates p < 0.001.

Figure 9: Part segmentation results on silhouettes from each of
the three shape categories. Solid areas of color represent estimated
parts. The human silhouette offers particular trouble to the 2D Min-
ima Rule-based approaches, as both arms and legs are bounded by
part boundaries with only one curvature minimum endpoint, much
like the index finger in Figure 7. In addition, the boundaries of the
legs share the same single minimum endpoint.

mentations (one of them Puffball segmentation); they were asked to
choose the segmentation that looked more correct. This was done
40 times for each comparison, leading to a total of 960 compar-
isons (320 for each category) for each of the Necks and Limbs and
the Shortcut rule. It is worth noting that the competing algorithms
are our implementations of previous work, and thus likely do not
represent the full potential of those algorithms or approaches.

Results of this experiment are shown in Table 1. As the table shows,
Puffball segmentations were preferred well over both competing
segmentations in every category except one. Overall, though the
preferences were far from absolute, Puffball was selected a signifi-
cantly higher percentage of the time; in most categories, this statis-
tical significance was very pronounced. These results suggest that
our segmentation approach, though it includes no explicit measure-
ment of contour curvature and never locates contour minima, can
perform as well as or better than more classical Minima-rule-based
algorithms.

3.2 Image-Based Material Transfer

Another interesting problem is a variant of texture transfer. Con-
sider the image of the strawberry in Figure 10a. Suppose we wanted
to replicate the appearance of this strawberry on a novel shape, such
as the donut in figure 10b. The naı̈ve approach would require ac-
curately extracting the three-dimensional geometry of both objects,
separating the effects of global shading and local reflectance, de-
termining the global statistics of the surface texture, replicating the
source texture on the novel shape, and re-combining the reflectance
and shading. A more desirable alternative would be one which re-
quires no explicit knowledge of either three-dimensional shape, and
operates entirely in the image domain.



Figure 10: Image-based material transfer. (a,b) A source and tar-
get image. (c,d) The shape-based descriptor of interior points as
determined by the Puffball surface normals. Here, saturation cor-
responds to how peripheral a point is, and hue represents the direc-
tion it lies away from the center.

If the rendered image is to appear accurate, the local image behav-
ior at any pixel must be consistent with that of the source image.
This problem was touched on briefly by Efros and Freeman [2001],
but in the absence of any shape information, their technique could
only be applied to surfaces under similar lighting conditions. In
general, the local image behavior in an image of three-dimensional
surface depends not only on the surface texture but on the shape of
the object. What is needed is a representation of where an interior
point lies relative to the shape. A smooth, scale-invariant inflation
such as Puffball gives us this representation. If we take the surface
normal of the inflation of a silhouette, that normal vector provides
a smooth, robust representation of where every interior point lies
within the shape (see Figures 10c and 10d): in the center, near the
edge, or somewhere in between. With this representation, a target
texture can be rendered while maintaining both local image consis-
tency and consistency with the global structure of the shape.

With this measure in hand, we implemented a image-based mate-
rial transfer algorithm inspired by the texture synthesis approach of
Lefebvre and Hoppe [2005]. In brief, our approach synthesizes the
novel image coarse-to-fine in a Gaussian pyramid, using a “Gaus-
sian stack” of the source image as a basis. At each level, the al-
gorithm constructs a coordinate image, in which each pixel of the
target image refers to a location in the source image at the appro-
priate level of the Gaussian stack. This coordinate imageis updated
several times to ensure that for each pixel p in the target image, the
source pixel q to which it refers has a similar image neighborhood
and similar location relative to the shape (as determined by Puffball
inflation). The coordinates are then upsampled to a finer scale and
the process is repeated.

Figure 12 compares the results of our material transfer algorithm
and that of Efros and Freeman [2001]. It is clear that the integration
of shape information improves performance, especially when the
lighting of the source and target shapes are very different. Neverthe-
less, the algorithm does not require explicit or accurate knowledge
of the object’s actual shape; only the silhouette is required. Figure
11 shows further texture synthesis results. Even in circumstances
when the inflated shape is missing much of the source object’s ac-

Figure 12: Comparison with Efros and Freeman [2001]. (a) The
result of Efros and Freeman’s algorithm on the source and target
image in Figure 10. (b) The results of Puffball material transfer on
the same images. (c,d) A source and target image from Efros and
Freeman [2001]. (e) Efros and Freeman’s result on images 12c and
12d. (f) Our results on images 12c and 12d.

tual geometry, as in the case of the rock image, a realistic-appearing
surface texture can still be successfully produced.

4 Conclusion

We have shown how scale invariant inflation can be usefully ap-
plied to two very different image-based tasks: segmentation of sil-
houettes, and material transfer with 3D objects. We have also intro-
duced a novel technique for scale invariant inflation, called Puffball.
Puffballs definition and implementation are extremely simple, and
the results are intuitive and well-behaved. And many other prob-
lems can benefit from the application of scale-invariant inflation:
lighting direction estimation, shape from shading, material analy-
sis, grasping and navigation could all make use of such a tool.

Transformations between 2D and 3D imagery come up in many
contexts, and a great many tools, some quite elaborate, have been
developed to meet the needs of particular tasks. We do not claim
that Puffball is the ideal solution for every task; nor do we doubt
that it could be augmented in various ways to broaden its utility.
However, in this paper we have resisted the temptation to add com-
plexity so that we can explore Puffball in its simplest form.

We think of Puffball as analogous to the Sobel edge detector: not
always the most sophisticated tool on the shelf, but one so simple
and intuitive that every vision or graphics researcher should know
it. We feel that it is a worthy addition to the basic toolbox of re-
searchers in vision and graphics, where many more potential uses
and applications undoubtedly wait to be uncovered.



Figure 11: Additional material transfer results.
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