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Abstract

Objects in visual scenes come in a rich variety of trans-

formed states. A few classes of transformation have been

heavily studied in computer vision: mostly simple, para-

metric changes in color and geometry. However, transfor-

mations in the physical world occur in many more flavors,

and they come with semantic meaning: e.g., bending, fold-

ing, aging, etc. The transformations an object can undergo

tell us about its physical and functional properties. In this

paper, we introduce a dataset of objects, scenes, and ma-

terials, each of which is found in a variety of transformed

states. Given a novel collection of images, we show how to

explain the collection in terms of the states and transforma-

tions it depicts. Our system works by generalizing across

object classes: states and transformations learned on one

set of objects are used to interpret the image collection for

an entirely new object class.

1. Introduction

Much work in computer vision has focused on the prob-
lem of invariant object recognition [9, 7], scene recognition
[32, 33], and material recognition [26]. The goal in each of
these cases is to build a system that is invariant to all within-
class variation. Nonetheless, the variation in a class is quite
meaningful to a human observer. Consider Figure 1. The
collection of photos on the left only shows tomatoes. An
object recognition system should just see “tomato”. How-
ever, we can see much more: we can see peeled, sliced, and
cooked tomatoes. We can notice that some of the tomatoes
are riper than others, and some are fresh while others are
moldy.

Given a collection of images of an object, what can a
computer infer? Given 1000 images of tomatoes, can we
learn how tomatoes work? In this paper we take a step to-
ward that goal. From a collection of photos, we infer the
states and transformations depicted in that collection. For
example, given a collection of photos like that on the left of
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Figure 1. Example input and automatic output of our system:

Given a collection of images from one category (top-left, subset of

collection shown), we are able to parse the collection into a set of

states (right). In addition, we discover how the images transform

between antonymic pairs of states (bottom-left). Here we visualize

the transformations using the technique described in Section 4.5.

Figure 1, we infer that tomatoes can be undergo the follow-
ing transformations, among others: ripening, wilting, mold-
ing, cooking, slicing, and caramelizing. Our system does
this without having ever seen a photo of a “tomato” during
training (although overlapping classes, such as “fruit”, may
be included in the training set). Instead we transfer knowl-
edge from other related object classes.

The problem of detecting image state has received some
prior attention. For example, researchers have worked on
recognizing image “attributes” (e.g., [10], [24], [23], [11]),
which sometimes include object and scene states. However,
most of this work has dealt with one image at a time and has
not extensively catalogued the state variations that occur in
an entire image class. Unlike this previous work, we focus
on understanding variation in image collections.

In addition, we go beyond previous attributes work by
linking up states into pairs that define a transformation: e.g.,
raw↔cooked, rough↔smooth, defalted↔inflated. We ex-
plain image collections both in terms of their states (unary
states) and transformations (antonymic state pairs). In ad-
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dition, we show how state pairs can be used to extract a
continuum of images depicting the full range of the trans-
formation (Figure 1 bottom-left).

Understanding image collections is a relatively unex-
plored task, although there is growing interest in this area.
Several methods attempt to represent the continuous vari-
ation in an image class using subspaces [5], [22] or mani-
folds [13]. Unlike this work, we investigate discrete, name-
able transformations, like crinkling, rather than working
in a hard-to-interpret parameter space. Photo collections
have also been mined for storylines [15] as well as spatial
and temporal trends [18], and systems have been proposed
for more general knowledge discovery from big visual data
[21], [1], [3]. Our paper differs from all this work in that
we focus on physical state transformations, and in addition
to discovering states we also study state pairs that define a
transformation.

To demonstrate our understanding of states and transfor-
mations, we test on three tasks. As input we take a set of
images depicting a noun class our system has never seen be-
fore (e.g., tomato; Figure 1). We then parse the collection:

• Task 1 – Discovering relevant transformations: What
are the transformations that the new noun can undergo
in (e.g., a tomato can undergo slicing, cooking, ripen-

ing, etc).

• Task 2 – Parsing states: We assign a state to each image
in the collection (e.g., sliced, raw, ripe).

• Task 3 – Finding smooth transitions: We recover a
smooth chain of images linking each pair of antonymic
states.

Similarly to previous works on transfer learning [6, 4,
19, 28] , our underlying assumption is the transferrability
of knowledge between adjectives (state and transformation)
(see Fig 2). To solve these problems, we train classifiers for
each state using convolutional neural net (CNN) features
[8]. By applying these classifiers to each image in a novel
image set, we can discover the states and transformations
in the collection. We globally parse the collection by inte-

Melted chocolate Melted sugar Melted butter

Figure 2. Transferrability of adjective: Each adjective can apply

to multiple nouns. Melted describes a particular kind of state: a

blobby, goopy state. We can classify images of chocolate as melted

because we train on classes like sugar and butter that have similar

appearance when melted.

grating the per-image inferences with a conditional random
field (CRF).

Note that these tasks involve a hard generalization prob-
lem: we must transfer knowledge about how certain nouns
work, like apples and pears, to an entirely novel noun, such
as banana. Is it plausible that we can make progress on
this problem? Consider Figure 2. Melted chocolate, melted

sugar, and melted butter all look sort of the same. Although
the material is different in each case, “meltedness” always
produces a similar visual style: smooth, goopy, drips. By
training our system to recognize this visual style on choco-

late and sugar, we are able to detect the same kind of ap-
pearance in butter. This approach is reminiscent of Freeman
and Tenenbaum’s work on separating style and content [29].
However whereas they focused on classes with just a single
visual style, our image collections contain many possible
states.

Our contribution in this paper is threefold: (1) introduc-
ing the novel problem of parsing an image collection into
a set of physical states and transformations it contains (2)
showing that states and transformations can be learned with
basic yet powerful techniques, and (3) building a dataset of
objects, scenes, and materials in a variety of transformed
states.

2. States and transformations dataset

The computer vision community has put a lot of ef-
fort into creating datasets. As a result, there are many
great datasets that cover object [9, 7, 31, 25, 20], attribute
[16, 1, 10], material [26], and scene categories [32, 33].
Here, our goal is to create an extensive dataset for char-
acterizing state variation that occurs within image classes.
How can we organize all this variation? It turns out lan-
guage has come up with a solution: adjectives. Adjectives
modify nouns by specifying the state in which they occur.
Each noun can be in a variety of adjective states, e.g., rope

can be short, long, coiled, etc. Surprisingly little previous
work in computer vision has focused on adjectives [11, 17].

Language also has a mechanism for describing transfor-
mations: verbs. Often, a given verb will be related to one or
more adjectives: e.g., to cook is related to cooked and raw.
In order to effectively query images that span a full trans-
formation, we organize our state adjectives into antonym
pairs. Our working defining of a transformation is thus a
pair {adjective, antonym}.

We collected our dataset by defining a wide variety of
{adjective, antonym, noun} triplets. Certain adjectives,
such as mossy have no clear antonym. In these cases, we
instead define the transformation as simply an {adjective,
noun} pair. For each transformation, we perform an image
search for the string “adjective noun” and also “antonym
noun” if the antonym exists. For example, search queries
included cooked fish, raw fish, and mossy branch.
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Figure 3. Example categories in our dataset: fish, room, and persimmon. Images are visualized using t-SNE [30] in CNN feature space.

For visualization purposes, gray boxes containing ground truth relevant adjectives are placed at the median location of the images they

apply to. Dotted red lines connect antonymic state pairs. Notice that this feature space organizes the states meaningfully.

2.1. Adjective and noun selection

We generated 2550 “adjective noun” queries as follows.
First we selected a diverse set of 115 adjectives, denoted
A throughout the paper, and 249 nouns, denoted N . For
nouns, we selected words that refer to physical objects, ma-
terials, and scenes. For adjectives, we selected words that
refer to specific physical transformations. Then, for each
adjective, we paired it with another antonymic adjective in
our list if a clear antonym existed.

Crossing all 115 adjectives with the 249 nouns would be
prohibitively expensive, and most combinations would be
meaningless. Each noun can only be modified by certain
adjectives. The set of relevant adjectives that can modify a
noun tell about the noun’s properties and affordances. We
built our dataset to capture this type of information: each
noun is paired only with a subset of relevant adjectives.

N-gram probabilities allow us to decide which adjec-
tives are relevant for each noun. We used Microsoft’s Web
N-gram Services1 to measure the probability of each {adj
noun} phrase that could be created from our lists of adjec-
tives and nouns. For each noun, N ∈ N , we selected ad-
jectives, A ∈ A, based on pointwise mutual information,
PMI:

PMI(A,N) = log
P (A,N)

P (A)P (N)
, (1)

where we define P (A,N) to be the probability of the phrase
“A N”. PMI is a measure of the degree of statistical associ-
ation between A and N .

For each noun N , we selected the top 20 adjectives
A with highest min(PMI(A,N), PMI(ant(A), N)), where
ant(A) is the antonym of A if it exists (otherwise the score
is just PMI(A,N)). We further removed all adjectives from

1http://research.microsoft.com/en-us/collaboration/focus/cs/web-
ngram.aspx

this list whose PMI(A,N) was less than the mean value for
that list. This gave us an average of 9 adjectives per noun.

2.2. Image selection

We scraped up to 50 images from Bing by explicitly
querying {adj, noun} pair, in addition to querying by only
noun. While we scraped with an exact target query, the re-
turned results are quite often noisy. The main causes of
noise is {adj, noun} pairs being either a product name, a
rare combination, or a hard concept to be visualized.

Hence, we cleaned up the data through an online crowd
sourcing service, having human labelers remove any images
in a noun category that did not depict that noun. Figure 3
shows our data for three noun classes, with relevant adjec-
tive classes overlaid.

2.3. Annotating transformations between antonyms

While scraped images come with a weak state label, we
also collected human labeled annotations for a subset of our
dataset (218 {adj, antonym adj, noun} pairs). For these an-
notations, we had labelers rank images according to how
much they expressed an adjective state. This data gives us a
way to evaluate our understanding of the full transformation
from “fully in state A’s antonym” to “fully in state A” (re-
ferred to as ranking ant(A) to A henceforth). Annotators
split each noun category into 4 sections as the followings.
We give examples for A = open and N = door:

• “Fully A” – For example, fully open door images fall
into this category.

• “Between-A and ant(A)” – Half-way open door im-
ages fall into this category.

• “Fully ant(A)” – Fully closed door images fall into
this category.
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• “Irrelevant image” – For example, an image of broken
door lying on the ground.

We ask users to rank images accordingly by drag-and-drop.

3. Methods

Our goal in this paper is to discover state transforma-
tions in an image collection. Unlike the traditional recog-
nition task, rather than recognizing an object (noun) or
one attribute, we are interested in understanding an object
(noun)’s states and the transformations to and from those
states. There are various scenarios that we study for this:
singe image state classification, relevant transformation re-
trieval from the image collection, and ordering by transfor-
mation.

The common theme is to learn states and transformations
that can generalize over different nouns. The reason behind
this generalization criterion is from the fact that it is impos-
sible to collect all training examples that can cover the en-
tire space of {noun}× {adjective}. Hence, in the follow-
ing problem formulations, we always assume that no image
from the specific target noun has been shown to the algo-
rithm. For example, no apple image is used during training
if we want to order images for the transformation to sliced

apple. In other words, we follow the concept of transfer
learning.

3.1. Image state classification

First, a simple task is to classify what is the most relevant
adjective that describes a single image. Figure 4 shows ex-
amples of images in our dataset. Can we tell that the dom-
inant state of Figure 4b is sliced? Also, can we tell how
sliced the apple image it is? As mentioned above, we put a
hard constraint that we never saw any apple image (includ-
ing sliced apple) during the training stage. Our goal is to
learn what it means to be sliced apart from all other nouns
and be able to transfer the knowledge to a new category (e.g.
apple) and infer the state of the image.

(a) (b) (c) (d) (e) (f)
tiny sliced inflated cooked open clean

huge whole deflated raw closed dirty
bear apple ball fish door water

Figure 4. Examples of objects in a variety of transformed

states and their antonym states: Notice that each state of an

object has at least one antonym state.

Our approach for solving this problem is training a lo-
gistic regression model. Let N ∈ N be the query noun that
will be excluded from our test set. Then, using all non-N
images, we split them into the positive and negative sets. To
train a classifier for adjective A ∈ A, the positive set is all
images of A, and the negative set is all images not related to
A. Then, the score of A for image I , denoted g(A|I), can
be easily computed by:

g(A|I) = σ(−wT
Af(I)), (2)

where σ is the sigmoid function, f(I) is a feature vector of
I , and wA is a weight vector trained using a logistic regres-
sion model.

It is worth noting that each image can be in the mix of
different states (e.g. an image of fish can be sliced and raw).
However, for the simplicity, we assume each image has one
dominant state that we want to classify.

3.2. Which states are depicted in the image collec-
tion?

Input Output 

! (sliced, whole) 
(chopped, whole) 

(crisp, soft) 

Figure 5. Discovering transformations: our goal is to find the

set of relevant adjectives depicted in a collection of images repre-

senting one specific noun. In this figure, we want to predict the

transformations that describe that describe a collection of apple

images.

Our second problem is to discover the relevant set of
transformations that are depicted in a collection of images.
Figure 5 describes our task. We are given a set of apple im-
ages scraped from the web. While we assume our algorithm
has never seen any of apple image, can we tell if this im-
age collection contains the transformations between pairs of
adjectives and their antonyms – (sliced, whole), (chopped,
whole), and (crisp, sofa)?

We now formalize this task. We want to find the best
adjective set, {Aj}j∈J , that can describe the collection of
images, {Ii}i∈I , representing a single noun. We abbreviate
this set as AJ . Then, our goal is to predict what the most
relevant set of adjectives and antonyms describing transfor-
mations, AJ , for the given collection of images. In this
problem, we constrain all J to have the same size. More
formally, we find J by maximizing

J = argmax
J′,|J ′|=k

∑

j∈J ′

∑

i∈I

[

eλg(Aj |Ii) + eλg(ant(Aj)|Ii)
]

. (3)

Rather than taking the sum over the raw g(·) scores, we take
the exponential of this value, with λ being a free parame-
ter that trades off between how much this function is like a
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sum versus like a max. In our experiments, we set λ to 10.
Thus, only large values of g(Aj |Ii) contribute significantly
to making Aj appear relevant for the collection.

3.3. Collection parsing

Rather than classifying each image individually, we can
do better by parsing the collection as a whole. This is anal-
ogous to the image parsing problem, in which each pixel in
an image is assigned a label. Each image is to a collection
as each pixel is to an image. Therefore, we call this problem
collection parsing. We formulate it as a conditional random
field (CRF) similar to what has been proposed for solving
the pixel parsing problem (e.g., [27]). For a collection of
images, I, to which we want to assign per-image states A,
we optimize the following conditional probability:

log p(A|I) =
∑

i

g(Ai|Ii)+

λ
∑

i,j∈N

ψ(Ai, Aj |Ii, Ij) + logZ,
(4)

where Z normalizes, g serves as our data term, and the pair-
wise potential ψ is a similarity weighted Potts model:

ψ(Ai, Aj |Ii, Ij) = (Ai ̸= Aj)

(

ξ + e−γ∥f(Ii)−f(Ij)∥2

ξ + 1

)

.

(5)

3.4. Discovering transformation ordering

Each image in our dataset depicts an object, scene, or
material in a particular state. Unfortunately, since images
are static, a single image does not explicitly show a trans-
formation. Instead, we arrange multiple images in order
to identify a transformation. At present, we only inves-
tigate a simple class of transformations: transitions from
“anytonym of some state A” to “fully in state A” (ant(A)
to A).

Figure 6 shows our goal. Given a set of images and
an adjective A, we sort images {Ii} based on g(A|Ii) −
g(ant(A)|Ii) (Eqn. 2).

Input Output 
sliced 

! ! < < 

whole 

sliced, 

Figure 6. Discovering transformation orders: given a particu-

lar adjective A and a collection of images, our goal is to sort the

images according to the transformation from ant(A) to A. In this

figure, we order images from whole to sliced. Note that we do not

use any apple images while training.

4. Results

We evaluate three tasks: 1) Identification of relevant
transformations for an image collection. 2) State classifica-

Molten!
Caramelized!

Burnt!
Whipped!
Crushed

Sunny ! Foggy!
Murky ! Clear!

Sunny ! Cloudy!
Windblown!

Muddy ! Dry

Draped!
Loose ! Tight!

Heavy ! Lightweight!
Crumpled!
Crinkled

Engraved!
Broken !

Narrow ! Wide!
Ancient ! Modern!
Curved ! Straight

Chocolate Beach

Jacket Computer

Figure 7. Example results on discovering states: Subset of im-

age collection for each noun is to the left of discovered states.

Our system does well on foods, scenes, and clothing (left three

collections), but performs more poorly on objects like computer

(bottom-right).

tion per image. 3) Ranking images by transformation from
ant(A) to A.

4.1. Discovering relevant transformations

To implement g(·) (Equation 2), we used logistic regres-
sions trained on CNN features [8] (Caffe Reference Ima-
geNet Model2, layer fc7 features). Figure 7 shows typical
results for retrieval sets of size |J | = 5 (Equation 3). In
order to ensure most effective examples can be used, we
priortize negative examples from nouns that contain the par-
ticular adj we are interested in. This type of generalizaiton
technique has been explored in [10] as well.

We evaluated transformation discovery in an image col-
lection as a retrieval task. We defined the ground truth rel-
evant set of transformations as those {adjective, antonym}
pairs used to scrape the images (Section 2.1). Our retrieved
set was given by Equation 3. We retrieved sets of size
|J | = 1..|A|. We quantify our retrieval performance by
tracing precision-recall curves for each noun. mAP over
all nouns reaches 0.39 (randomly ordered retrieval: mAP
= 0.11). Although quantitatively there is room to improve,
qualitatively our system is quite successful at transforma-
tion discovery (Figure 7).

In Figure 9(a), we show performance on several meta-
classes of nouns, such as “metals” (e.g., silver, copper,
steel) and “food” (e.g., salmon, chicken, fish). Our method
does well on material and scene categories but struggles
with many object categories. One possible explanation is
that the easier nouns have many synonyms, or near syn-
onyms, in our dataset. To test this hypothesis, we measured
semantic similarity between all pairs of nouns, using the
service provided by [12]. In Figure 9(b), we plot semantic
similarity versus AP for all nouns. There is indeed a corre-
lation between synonymy and performance (r = 0.28): the
more synonyms a noun has, the easier our task. This makes

2http://caffe.berkeleyvision.org
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since because it is easier to generalize to a novel noun when
the training set contains many similar nouns. We investigate
our ability to generalize across dissimilar nouns in Section
4.4.

0 20 40
0.11

0.12

0.13

λ

A
c
c

0 0.1 0.2
0.11

0.12

0.13

γ

A
c
c

γ

λ

 

 

2 4 6 8

2

4

6

8
0.1

0.11

0.12

Figure 8. Performance of CRF over various parameters: We

show the results of our CRF method on the collection parsing prob-

lem. The parameters λ and γ correspond to those in Equation 4.

Note that the accuracy improves as we increase the weights on

pairwise smoothing term.

4.2. State classification

To implement state classification we optimize our CRF
model from Equation 4 using the method from [2]. This
gives us a maximum a posteriori (MAP) configuration of
states per image in the collection. We evaluated the MAP
classifications by measuring mean accuracy at correctly
classifying the state of each image across all collections.
We used the states from our set of discovered transforma-
tions as the label space for the CRF. It is also possible to
run the CRF with all adjectives as candidates classes. How-
ever, using all adjectives does worse: mean accuracy drops
from 12.46% to 11.72%. Thus, the relevant transformation
discovering acts as a holistic context that improves the clas-
sification of each individual image.

In Figure 8 we show how performance varies as a func-
tion not the CRF parameters λ and γ (Section 3.3). The
rightmost subplot shows the mean accuracy as a function of
a grid of settings of λ and γ. The left two subplots show
the accuracy profile for λ setting γ to its best value and vice
versa. We can consider the data term g alone by setting
λ to zero. This performs worse than when we include the
pairwise potential, demonstrating that parsing the collection
holistically is better than treating each image individually.

Even though state classification per image is quite noisy,
because each image collection contains many images, these
noisy classifiers add up to give fairly accurate characteri-
zations of entire image collections, as demonstrated by the
success of discovering the relevant transformations in the
collection (Section 4.1).

4.3. Ranking images by transformation

We also evaluated how well we perform at ranking im-
ages from ant(A) to A. As ground truth, we use the trans-
formation annotations provided by human labelers (Section
2.3). We only consider images that fall in the Mid-A sec-
tion. Our method achieves ρ̄ = 0.46. We visualize the

rankings in Section 4.5. There is ample room for improve-
ment on this difficult task, which we hope will inspire future
work.
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Figure 9. (a) Mean AP at discovering states for different classes

of noun. (b) Performance correlates with the semantic similarity

between the training set and the test noun, but this does not fully

explain why some image collections are easier to understand than

others.
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Figure 10. Performance versus percent of training nouns used, tak-

ing nouns in order of semantic similarity to test noun. Performance

increases as more similar nouns are included in the training set, but

is still well above chance even when the training set only includes

dissimilar nouns (chance = gray line, estimated by assigning ran-

dom scores to images).
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Figure 11. Some classes generalize poorly, others generalize bet-

ter. In this example we visualize how performance degrades as

semantically similar nouns are removed from the training sets for

computer and room (visualized using the “transformation taxi”

method from Section 4.5). Notice that old↔new computer de-

grades rapidly whereas cluttered↔empty may be more easily gen-

eralizable across dissimilar noun classes.

4.4. How well does our system generalize across
dissimilar noun classes?

Our tasks are all about transferring knowledge from a
training set of noun classes to novel nouns. Sometimes
this task is very easy: transferring from laptop to computer

might not require much generalization. To test how well
our method generalizes, we restricted our training set, for
each query noun, to only include nouns that a certain se-
mantic distance from the query noun. As in Figure 9(b),
we again use semantic similarity scores obtained from [12].
In Figure 10, we plot how performance increases, on each
of our tasks, as the training set grows to include more and
more nouns that are semantically similar to the query noun.
Clearly, including synonyms helps, but performance is still
well above chance even when the training set only contains
nouns quite distinct from the query noun: our system can
generalize state transformations over fairly dissimilar noun
classes.

We visualize the effect of removing semantically sim-
ilar nouns in Figure 11. Here we show ranked trans-
formations for old↔new computer and cluttered↔empty

room, using the visualization method described in Section
4.5. As we restrict the training set to include fewer and
fewer similar nouns, the qualitative results degrade, as did
the quantitative results. However, some classes general-
ize better than others. For example, old↔new computer

may rely on having very similar examples in the train-

ing set (in particular, old↔new laptop) in order perform
well; removing laptop from the training set has a big ef-
fect. On the other hand, many classes can undergo the trans-
formation cluttered↔empty and this transformation tends
to look alike between classes: a busy textural scene be-
comes flat and homogeneous in appearance. Correspond-
ingly cluttered↔empty room is less rapidly affected by re-
moving similar nouns from the the training set.

4.5. Visualizing transformations

A transformation can be visualized by finding a smooth
sequence of images from a starting state (A) to a trans-
formed ending state (ant(A)). We use a method similar
to “image taxis” [14].

First, we convert the input image collection to a graph.
Each image is connected to its k-nearest neighbors in fea-
ture space (k = 5 in our implementation). For adjective
A, we find a path P through the graph that optimizes the
following cost function:

argmin
P

g(A|Is) + g(ant(A)|It) +
1

|P|

|P|
∑

i=1

∥fPi
− fPi+1

∥1,

(6)

where g(·) is given by Equation 2, s is the starting node of
P , and t is the ending node. For features we use our ad-

jective classifier scores: fi = {fj(Ii)}
|A|
j=1 and fj(Ii) =

g(Aj |Ii). In addition, we multiply the feature channel for
A and ant(A) by a constant (20 in our implementation) in
order to encourage smoothness most of all in that channel.
This cost function says: 1) starting image should be A, 2)
ending image should be highly ant(A), and 3) path should
be smooth in feature space. This cost can be optimized ef-
ficiently using Djistra’s algorithm. As an additional con-
straint we only consider values of s among the top 5 images
according to g(A|Is), and t among the top 5 images accord-
ing to g(ant(A)|It).

Example transformation visualizations are shown in Fig-
ure 12. Here we show several transformations each for sev-
eral noun classes. For simple color and transformations,
such as dark↔bright and cluttered↔empty, the method is
reasonably effective. For geometric transformations, such
as deflated↔inflated, the results are much worse. Future
work should focus on capturing these difficult types of
transformations.

5. Conclusion

In this paper, we have introduced the novel problem of
discovering and characterizing states and transformations in
image collections. We have shown that simple yet powerful
techniques are sufficient to make progress on this problem.
We will publicly release our dataset and code to promote
further work on this difficult problem.
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Figure 12. Example transformation visualizations: each transformation was discovered from the image collection of a noun class that

was not included in the algorithm’s training.
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