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A central problem in vision is the recovery of the 3D structure of a scene from a single 2D projection.
The interpretation of planar line-drawings represents one of the most challenging instances of this highly
underconstrained problem. Quite intriguingly, the human visual system can readily accomplish this task.
This paper reports on an attempt to understand and computationally mimic this important perceptual
ability. It has long been suggested that humans use principles of simplicity in achieving this percept.
Barrow and Tenenbaum, and more recently, Marill, have proposed that standard deviation of the included
angles should be used as a measure of complexity; minimizing this metric leads to perceptually correct
interpretations for many line-drawings. However, we have found that the use of this measure alone results
in unexpected and bizarre interpretations for certain figures. We have devised a new approach that utilizes
three types of measures: angle variance, planarity of faces and overall compactness. When these measures
are appropriately combined, the model interprets a wide variety of line-drawings of polyhedral objects in a
manner consistent with human perception. Our model is also robust in the sense that it works without the
need for parameter tweaking to handle different cases.

INTRODUCTION:

The central task of any vision system, whether biological or artificial, is to infer the true nature of a
scene given only its two dimensional projection. By the 'true nature’ of a scene we imply such properties as
relative depth ordering of objects, surface reflectance distribution and the illumination patterns over the
scene. The recovery of all these properties is intimately dependent on the recovery of the three dimensional
structure of the scene.

The problem of recovering the 3D structure of an object given a single 2D projection of the same is
usually highly underconstrained. In some situations, additional cues like shading and texture gradients can
be used, to aid the recovery process [Horn, 1975; Witkin, 1981; Yuille, 1987]. The interpretation of line-
drawings, which are highly impoverished representations of objects, lacking in all cues except for the x, y
coordinates of points along the contours (see figure 1(a)) presents a more difficult challenge.

The human visual system seems to effortlessly reconstruct an object in three dimensions given only
its 2D line-drawing (see figure 1(b)). This ability is particularly intriguing when one considers the fact that
any planar line-drawing is geometrically consistent with infinitely many 3D structures, as shown
schematically in figure 1(c). What distinguishes the 'correct’ 3D structure from the rest? How might a
vision system search for and find the 'correct' structure in the infinite search space of all possible 3D
structures consistent with the given line-drawing? These are the two questions that we shall be primarily
concerned with in this paper. To keep the scope of our study manageable, we shall consider only line
drawings of arbitrary polyhedral objects.

BACKGROUND:

The issue of how a vision system might recover the 3-D structure corresponding to a 2-D line
drawing has been extensively studied. Among the most notable early contributors to this field are Roberts,
Huffman, Clowes, Waltz, and Barrow and Tenenbaum [Roberts, 1965; Huffman, 1971; Clowes, 1971;
Waltz, 1972; Barrow & Tenenbaum, 1981]. The initial emphasis was on recovering the qualitative shape
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from line drawings. This involved labelling the observed lines as being either convex, concave or occluding,
Mackworth [1973] showed that for polyhedral objects, a labelled line drawing is equivalent to a surface
orientation graph (SOG) in gradient space (a SOG has vertices that represent the orientations of surfaces and
edges that represent their mutual connectivities). However, the precise scale and location of the SOG in
gradient space can not be recovered from merely a labelled line drawing. The next step is to recover the
quantitative or precise shape of the object represented by the given line-drawing. Kanade [1981] used ideas of
skew symmetry to recover shape in some simple cases. Barrow and Tenenbaum [1981] proposed the notion
of maximizing symmetry as a metric for recovering shape.
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Figure 1. (a) A line drawing provides information only about the x, y coordinates of peints lying
along the object contours. (b} The human visual system is usually able to reconstruct an object in
three dimensions given only a single 2D projection (c) Any planar line-drawing is geometrically
consistent with infinitely many 3D structures.

X

Quantitative shape recovery can be thought of as a transformation of the SOG involving translation
and scaling. The required transformation may be determined by the use of some heuristics like those of
symmetry mentioned above. Alternatively, the problem may be thought of as one that requires the
computation of the unknown z values associated with each vertex visible in the line drawing. This view
immediately prompts a 'beads-on-wires’ paradigm for shape recovery as shown in figure 2. The idea here is
the following: the "wires' on which the beads' rest are oriented parallel to the z-axis (which here is the same
as the line of sight). Moving the beads along the wires corresponds to varying the depth values associated
with the vertices of the input line drawing. The objective is to choose that configuration of the beads from
among the infinitely many possible which minimizes some predefined cost function. Accordingly, the two
critical components of a beads on wires implementation are: (1) the objective function, and (2) the technique
used to search the space of possible bead configurations. We next review some of the related work that has
addressed these issues in the past.

Psychophysical researchers have long suggested that notions of maximizing 'simplicity’ underlie
many of our visual functions. According to the Gestalt school of thought, there exist global 'principles of
organization' that explain the nature of psychological processes. One such principle is the law of Pragnanz,
which postulates that 'psychological organization will always be as 'good' as the prevailing conditions
allow' [Koffka, 1935]. What exactly constitutes 'simplicity’ or 'goodness’ is described in a relatively
informal and vague manner, It was only very recently that researchers started experimenting with precisely
computable measures that could be used as metrics for figural simplicity. Attneave and Frost [1969]
interpreted Pragnanz as 'minimum complexity', and suggested that the perception of line drawings of
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parallelipipeds could be understood in terms of a system that minimizes diversity in angles, lengths and
slopes. On similar lines, Barrow and Tenenbaum [1981] suggested some global measures of regularity such
as the sum of the squares of angles of faces; the sum of the squares of (2 - Z(angles at a vertex)) (which
tends to equalize an analog of Gaussian curvature at the vertices); the sum of squares of cosines of face
angles (which tends to produce right angles). Brady and Yuille [1983] proposed the use of 'extremum
principles' in establishing 3-D shape. One such extremum principle is to maximize the ratio of the area to
the square of the perimeter. This principle interprets ellipses, parallelograms and triangles as slanted circles,
squares and equilateral triangles, respectively.

Figure 2. The ‘beads-on-wires' paradigm for shape recovery. The basic idea here is to find a
configuration for the beads that best satisfies some chosen criterion.

Most of the ideas described above emphasize the need to maximize regularity. A concise
computational metric of the psychological notion of regularity is the variance of the included angles in a
figure. Minimizing this quantity is akin to making the figure as regular as possible. In a recent paper,
Marill [1991] demonstrated that the principle of minimizing the standard deviation of angles (MSDA, for
short) can be used to correctly interpret (in a manner consistent with human perception) an impressive array
of examples. A simple gradient descent algorithm was used to find the solution that minimized the
objective function.

However, further experimentation with the MSDA principle reveals that not withstanding its
impressive performance on some examples, it is not adequate for other seemingly simple figures. Figure 3
shows two such instances. The interpretations that the MSDA comes up with are strange objects with
warped surfaces, What is interesting to note is the fact that even for incorrect interpretations, the bead
configuration usually does represent a global minimum in the standard deviation space. For example, in the
hexagonal figure (figure 3(b)), all the angles are very close to 90 degrees and the wireframe is maximally
symmetric according to the MSDA principle. However, the interpretation does not quite match the natural
one - that of a truncated hexagonal pyramid. It is evident that the human visual system does not perform a
simple minimization of the SDA. A key difference between these interpretations and the perceptually correct
ones is the planarity of surfaces; while all facets in the perceptually correct interpretations are planar, most
of the surfaces in the structures shown in figures 3(a) and 3(b) are warped.

Several more examples such as these suggest that planarity is a strong constraint on the interpretations
permitted by the human visual system. The human visual system apparently prefers interpretations that are
as symmetric as possible under the constraint that all the facets be maximally planar. Another constraint
that seems to guide the human recovery of 3-D shape is that of ‘compactness'. The idea is illustrated in
figure 4. As a direct outcome of the generic viewpoint assumption (the viewing position is not assumed to
be distinguished in any fashion), the amount of foreshortening on most of the lines in the 2-D line
drawings is not assumed to be excessive. This constraint leads to choosing interpretation 4(a) over 4(b) even
though the latter has marginally lesser standard deviation than the former.
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Figure 3. The perceptually incorrect shapes recovered from the input line-drawings (upper left
and right) by Marill's algorithm.

(a) (b)
Figure 4. The '‘compactness’ constraint leads to choosing interpretation (a) over interpretation (b).

A new approach that we have recently developed attempts to use all three metrics viz., regularity,
planarity and compactmess to recover perceptually 'correct’ 3D structures from 2D line drawings.

A NEW 3D SHAPE RECOVERY ALGORITHM:

We mentioned earlier that the two features that best characterise a 3D shape recovery process are :
1. the objective function, and
2. the search space traversal strategy.
We begin the discussion of our 3D shape recovery algorithm with a description of these two features.

The objective function:

We ideally wish to obtain that 3D configuration which, while having planar faces is maximally
regular. Furthermore, the recovered 3D structure should be compact, i.e., it should not be necessary to
invoke the possibility of excessive foreshortening on any line segment to relate the observed projection
with the 3D structure.

The search space traversal startegy:

One of the simplest techniques to minimize a cost function is gradient descent. In the present case,
we could define a cost function f as a weighted sum of the three metrics of regularity, planarity and
compactness

f = wy*Regularity + w, *Planarity + w,*Compactness

54



and then attempt to do a gradient descent on f. Sounds quite reasonable. The fly in the ointment, of course,
is how to choose the appropriate w;'s. The relative weights that might be appropriate for one case might

be inappropriate for another. The choices of the weights can, at best, be ad hoc. Even if one uses
sophisticated techniques like the Continuation method [Leclerc, 1989; Fischler & Leclerc, 1992], the values
of many parameters have to be chosen in an ad hoc fashion.

An even more fundamental problem associated with this approach is illustrated in figure 5. Consider
a two-metric optimization situation which requires determining the best value of one metric corresponding
to an optimal value for the other. (In the 3D shape recovery context, this is analogous to finding the most
regular configuration amongst all possible planar-faceted ones.) The desired metric pair is shown highlighted
in the figure.

If the two metrics had been combined into one composite cost function, however, the global
minimum might have occured at a very different place, as shown in the lower curve of figure 5. Thus, the
combination of the two metrics is likely to shift the optimal solution from its ‘correct' position. This
argument has also been mentioned in the context of regularization. By the inclusion of the regularizing
term, one might end up with a s‘»olg‘lggzn11 quite unrelated to the original problem.
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Figure 5. A schematic representation of a potential problem associated with composite cost
functions. For some optimization scenarios, such combinations of metrics might result in shifting
the optimal solution from its 'correct’ position. See text for details.

Is there some way around using a parameterized cost function? Can the need for ad hoc choices be
reduced? Can the same algorithm work on several different cases without requiring parameter tweaking for
each individual case? A tall order, undoubtedly, but it seems that a space traversal strategy that answers
these questions affirmatively does exist. We next describe this strategy.

To motivate the particular search space traversal technique wé have used, let us begin with a simple
thought experiment. Imagine that one is given a 2D line drawing that one wishes to derive the 3D shape of
in accordance with the objective function decribed previously. How might one get to the desired shape? In
other words, what kinds of intermediate stages should one expect to pass through? One natural way of
getting to the desired shape is to incrementally modify the originally planar configuration so that at every
intermediate step one obtains the most regular locally planar configuration (each facet planar). This can be
thought of as doing gradient descent in regularity space where the points considered in the space correspond
to the different planar 3D configurations. The first local minima reached in this fashion is reported as the
recovered 3D shape.

This, then, is the basic idea: get to the final configuration via a series of intermediate maximally
regular planar configurations. (A reader familiar with computer algorithms might notice the similarity of
this approach to a 'greedy’ strategy - achieving a globally optimal solution through locally optimal
choices.) The compactmess heuristic may be implemented on top of this progression; the process can be
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terminated whenever the (lack of) compactness of a recovered configuration exceeds a preset threshold. This
threshold is arbitrary and is'the only ad hoc feature in the algorithm. But, this ad hocness is quite acceptable
since the choice of the threshold is uniform over all objects. Consequently, no parameter tweaking is
required to run the algorithm on different cases.

That was an informal, qualitative description of the kind of search space traversal sirhtegy one might
adopt. We now describe precisely how to implement this strategy for a beads-on-wires situation. To begin
with, we state a proposition and two corollaries that will be made use of for justifying and explaining the
behavior of the particular search space traversal strategy we adopt.

Proposition 1:

For any two lines with a common end-point, their included angle varies monotonically from 6, to 6,
(where 8, and B, are respectively, the included angles when the plane defined by the two lines is parallel to
the image plane (p=0, g=0) and when it is oriented such that p= p, and q= g, for some arbitrary p ¢ and
4, for surface orientations (k Pjs.Xq;) as k varies from O to 1. In other words, the included angle varies
monotonically in going along the straight line joining the origin with an arbitrary point in gradient space.
Proof:

Consider three arbitrarily chosen points A, B, and C as shown in figure 6(a). Without loss of generality,
we may assume that (X5, Y5, Z3) = (0,0, 0). The vectors AB and CB, then, are (X,, ¥,, z,)and (X,,
¥,. Z,) respectively. The included angle £ ABC may be obtained by computing the dot-product of these
two vectors.

A, 4

g (x1,y1,z1)

s; C
;)/’/W.. (2, y2, 22)
B §

+= -
X
Figure 6. (a) Three arbitrarily chosen points in x-y space. (b) An arbitrarily chosen point in gradient
space. See text for details.

LetF = (p;, q,) be an arbitrary point in gradient space (see figure 6(b)). We wish to show that as we
vary the orientation of the surface ABC so as to move along the line 'I' from the origin (p = 0, ¢ = 0) to
point F(p= p;.,q=¢g ) in gradient space, the included angle varies monotonically with the distance
moved along the line, We can parametrize this distance by a multiplicative factor k € [0, 1] such that
& p;. kq,) defines the intermediate surface orientations along 'I' The task then is to show that angle

£ ABC varies monotonically with k,

Taking the dot-product of AB and CB , we have
AB . CB =1ABIICBI Cos 6
=X+t Nt 22
5. Cos B =(x, X, + Y, ¥, + 2, 2,)N ABI|CBI
- XXy + Y2 + 2)Zy
Jxlz +y°% 422 \/Jcl2 +y,2 42,
By definition of surface depth gradients,

(1)
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z, = kpyx; + kq,y;
=k(p,x; +q,3;)
=kz, where Z; is the depth of the point i when surface ABC has
depth gradients equal to p, and . Substituting z; = kz into (1), we have
XX, + Yy, +k'z,2,,

CGSB: 2 2 2 2 2 2 2 2
-\/xl +y +k'zp sz +y,° +k Zpy
2
_ XX, + +k“z,2
8 = Cos! X2 T VY, i

\fxlz +y7 4Kz, \/xz" +y, +K%z,,)

To demonstrate that & varies monotonically with k, all that is required is to show that the partial
derivative of @ with respect to k i.e. 08/ dk is either positive or negative but not zero. Some
conceptually simple but tediously long algebraic manipulations prove that this indead is the case. 98 / dk
is zero only if the three points A, B and C are collinear. For any other configuration of the three points,
06 [ dk is either positive or negative, showing that @ does indeed increase or decrease monotonically
with k.

Corollary 1:

For regular polygons, as one progresses from a non-regular projection (parallel to the image plane and
therefore at the origin of gradient space) to a surface orientation ¢ that renders the polygon maximally
regular, the standard deviation of all included angles (SDA) decreases monotonically.

Proof:
This is a direct outcome of the result that all included angles in the polygon converge monotonically
to the same value as the surface approaches the orientation ¢,

Corollary 2:
In gradient space, the straight line joining the point nearest to the origin which represents an
orientation that renders a polygon maximally regular defines the path of steepest descent for SDA values.

Proof:

The truth of this assertion follows straightforwardly from proposition 1 and corollary 1. To aid
intuition, observe that the SDA decreases monotonically by the same amount in going from the origin to
any point in gradient space that represents an orientation of maximum regularity. The rate of descent is,
therefore, inversely proportional to the distance of the point from the origin.

With some formal groundwork in place, we proceed to describe our search space traversal strategy.

Consider figure 7. It schematically shows two independent cost spaces - one for regularity and the
other for planarity. Any configuration of the beads-on-wires setup corresponds to specific locations in these
two spaces. When the algorithm begins off, the deviation from planarity is, of course, 0 since the input
line-drawing is planar. Since each of the n vertices can be moved up or down independently by the chosen
step-size and one such movement constitutes a 'step' of the algorithm, we have 2n possible successor states
from any given state of the beads configuration. These choices correspond to having 2n possible ways of
moving in the two spaces (shown by arrows in the figure).

For regular polygons, we proved in corollary 1 that the desired configuration that maximizes
regularity and compactness can be reached from the origin by following the path of steepest descent. For a
single polygon, then, we would like to choose those of the 2n possible options which decrease the SDA.
From amongst the multiple candidates that decrease the SDA, we choose those that minimize the deviation
from planarity i.e. which minimize the up-climb in non-planarity space. In the situation,where there are
more than one such possible options, we choose the one that decreases the SDA the most. For a
multifaceted object, the same approach applies since the overall SDA is just the sum of the SDA's of the
individual faces. This completes the description of the search space traversal strategy.
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space
Figure 7. Our approach involves keeping the regularity and planarity cost spaces separate and
having the latter constrain the choices in the former. See text for details.

The decision to choose the configuration that minimizes the up-movement in non-planarity space has
precisely the effect that we want, It attempts to bring the whole bead configuration to a maximally planar
state as fast as possible. Thus, though individual bead movements introduce little bits of non-planarity
(imagine tweaking just one bead of a square), the subsequent bead movements are so chosen as to get the
whole setup back into a planar state (but one that is more regular than the previous one). We expect the
non-planarity plot to show little bumps indicating how the recovered structure goes from one planar
configuration to another through slightly non-planar intermediate states. Happily enough, this is precisely
what happens and in figure 8 we reproduce two plots of non-planarity versus time for showing the behavior
of the algorithm as it recovers the 3D shapes corresponding to two different line drawings.

A
I

Non-
Planarity

Non-
Planarity

- -
Time Time

Figure 8. The non-planarity versus time plots for two sample objects demonstrate that the

algotithm systematically examines maximally reqular planar faceted configurations.

One final point remains to be mentioned. How do we know that the intermediate 3D configurations
explored (with planar facets) will be the 'right' ones? For instance, in figure 9, what prevents us form
having 1' as an intermediate state between O (the initial configuration) and 2 (the desired final state) rather
than 17 The answer to this question makes explicit the inherent assumption embodied in the algorithm and,
therefore, also serves to highlight its limitations. The assumption is that the final orientation of each face
is the most compact and maximally regular one. Now, as was shown in corollary 2, the straight line
joining the origin of gradient space to this point also defines the direction of steepest descent in regularity.
Performing steepest descent on the sum of the individual SDA metrics therefore constrains the intermediate
configurations to be 1D interpolants between the origin and the final configuration. This is what rules out
exploring state 1" instead of 1 in figure 9.

What does this discussion say about the limitation of the algorithm? Simply put, it is this - if the
perceptually correct interpretation does not have all faces as being maximally regular and compact, then our
attempt to get at such a solution using the algorithm (and even actually finding it) is bound to produce
‘incorrect’ results (i.e. not in conformity with human perception).

Figures 10 (a) and (b) presents two examples showing the 3D structures recovered by our approach
from the input 2D line drawings.
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Figure 9. Of all the possible planar intermediate stages, our approaches chooses the one which
maximizes the descent in regularity space.

In practice, the algorithm can tolerate a substantial amount of slack in terms of deviations from
planarity and regularity in the faces of the intermediate and final configurations. So long as a majority of
the faces are well behaved, the erratic behavior of the rest is overshadowed. More precisely, so long as the
well-behaved nature of a majority of faces ensures our following the right descent path in the cost space,
slack on a few of the faces does not matter. Of course, the slack can be distributed across all faces instead of
being confined to just a few. Then the amount of slack permissible per face is proportionately reduced.
Figure 10(c) shows a line drawing which is correctly interpreted by our algorithm as an approximate cube
with slightly warped faces. The result shows that a significant amount of deviation from planarity can be

tolerated by the approach.
Ny

X

i (a) (b) ()
Figure 10. (a), (b) Two examples of 3-D shape recovery using constraints of symmetry, planarity
and compactness. (c¢) A line-drawing that is ‘correctly’ interpreted by our algorithm as an
approximate cube with slightly warped faces.

CONCLUSION:

We have proposed a reasonably robust method for recovering 3-D wireframes from 2-D line
drawings of simple polyhedral objects. Besides serving as a computational model of a perceptual process,
this method also holds promise as a means of simplifying man-machine interaction. In CAD/CAM for
instance, a part could be described using only its 2D projection; the 3D reconstruction could be
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accomplished automatically by the machine. Such an ability would also be of crucial significance for any
image understanding system. A word of caution though, We do not wish to suggest that the ideas for shape
recovery we have just described constitute a general solution for the problem of interpretation of arbitrary
line drawings; while some of these ideas may capture general truths, as currently implemented they can be
expected to work only in restricted domains. In particular, the current system cannot handle smoothly curved
objects and scenes involving occlusion. Furthermore, for arbitrary line drawings, the rather non-specific
notions of symmetry, planarity and compactness, among many others, are confounded with constraints
specific to particular objects imposed by high level knowledge. Trying to obtain the completely general
solution is an endeavor that is equivalent to trying to figure out how the brain works. This is probably a
trifle beyond the scope of this paper.

References:

Attneave, F., Frost, R. 1969. The determination of perceived tridimensional orientation by minimum
criteria. Perception and Psych. 6:391-396.

Barrow, H. G., Tenenbaum, J. M. 1981. Interpreting line-drawings as three-dimensional surfaces. Artificial
Intelligence, Vol. 17, Nos. 1-3, pp. 75-116.

Brady, M., Yuille, A. 1983. An extremum principle for shape from contour. MIT Al Lab Memo 711.
Clowes, M. B. 1971. On Seeing Things. Artificial Intelligence, Vol. 2, No. 1, pp. 79-116.
|

Fischler, M. A., Leclerc, Y. G. 1992. Recovering 3-D wire frames from line drawings. Proceedings of the
Image Understanding Workshop.

Horn, B. K. P. 1975. Obtaining shape from shading information. In The Psychology of Computer Vision,
ed. P. H. Winston New York: McGraw-Hill Book Co.

Huffman, D. A. 1971. Impossible objects as non-sense sentences. In Machine Intelligence 6 eds. Meltzer
and Michie pp. 295-323, Edinburgh Univ. Press.

Kanade, T. 1981. Recovery of the three-dimensional shape of an object from a single view. Artificial
Intelligence, Vol. 17, Nos. 1-3, pp. 409-460.

Koffka, K. 1935. Principles of Gestalt Psychology. New York: Harcourt Brace.

Leclerc, Y., (1989). Constructing Simple Stable Descriptions for Image Partitioning. Intl. J, Comp.
Vision 1, 73-102.

Mackworth, A. K. 1973. Interpreting pictures of polyhedral scenes. Artificial Intelligence, Vol. 4, No. 2,
pp. 121-137.

Marill, T, 1991, Emulating the human interpretation of line-drawings as three-dimensional objects. Intl. J.
of Comp. Vis. 6:2 pp. 147-161,

Roberts, L. G. 1965. Machine perception of three-dimensional solids, in J. T. Tippett et al. Eds., Optical
and Electro-Optical Information Processing, MIT Press, Cambridge, MA.

Waltz, D. L. 1972. Generating semantic descriptions from drawings of scenes with shadows. In The
Psychology of Computer Vision, ed. P. H. Winston New York: McGraw-Hill Book Co.

Witkin, A. P. 1981. Recovering surface shape and orientation from texture. Artificial Intelligence, Vol.
17, Nos. 1-3, pp. 1745.

Yuille, A. L. 1987. Shape from shading, occlusion and texture, Memo 885, MIT Al Lab.

60



	51.bmp
	52.bmp
	53.bmp
	54.bmp
	55.bmp
	56.bmp
	57.bmp
	58.bmp
	59.bmp
	60.bmp

