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Specular reflections and the perception of shape 

  

  

  

Many materials, including leaves, water, plastic, and chrome exhibit specular reflections. It seems reasonable that the 
visual system can somehow exploit specular reflections to recover three-dimensional (3D) shape. Previous studies (e.g., 
J. T. Todd & E. Mingolla, 1983; J. F. Norman, J. T. Todd, & G. A. Orban, 2004) have shown that specular reflections aid 
shape estimation, but the relevant image information has not yet been isolated. Here we explain how specular reflections 
can provide reliable and accurate constraints on 3D shape. We argue that the visual system can treat specularities 
somewhat like textures, by using the systematic patterns of distortion across the image of a specular surface to recover 
3D shape. However, there is a crucial difference between textures and specularities: In the case of textures, the image 
compressions depend on the first derivative of the surface depth (i.e., surface orientation), whereas in the case of 
specularities, the image compressions depend on the second derivative (i.e., surfaces curvatures). We suggest that this 
difference provides a cue that can help the visual system distinguish between textures and specularities, even when 
present simultaneously. More importantly, we show that the dependency of specular distortions on the second derivative 
of the surface leads to distinctive fields of image orientation as the reflected world is warped across the surface. We find 
that these ”orientation fields” are (i) diagnostic of 3D shape, (ii) remain surprisingly stable when the world reflected in the 
surface is changed, and (iii) can be extracted from the image by populations of simple oriented filters. Thus the use of 
specular reflections for 3D shape perception is both easier and more reliable than previous computational work would 
suggest. 

Keywords: 3D shape perception, specularity, shape-from-texture, shape-from-shading, gloss, natural image statistics, ma-
terial perception, modeling 

Introduction 
Figure 1 shows a computer-generated image of a per-

fectly polished mirror. Most observers agree that they have 
a vivid impression of the object’s three-dimensional (3D) 
shape. This is surprising given that many of the cues that 
are traditionally thought to be important for shape percep-
tion are absent from the stimulus. Specifically, 

1. The image is stationary and thus there are no cues 
to shape from motion. 

2. There is only a single image, and thus there is no 
consistent information from binocular stereopsis 
(because the disparity field is uniform). 

3. The object has been rendered as a perfectly smooth 
surface with uniform reflectance and thus there are 
no scratches, pigmentations, or other markings at-
tached to the surface that could provide shape-
from-texture information. 

4. The image contains no shading in the traditional 
sense of the word, (i.e., smoothly graded variations 

in intensity arising from a Lambertian surface) be-
cause the surface is a mirror that is riddled with 
specular highlights. 
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Indeed, when we look at the image, all that we see is a 
distorted reflection of the scene surrounding the object, 
and yet somehow we are able to interpret these warped pat-
terns to recover the 3D shape. How do we do this? What 
information is present in a single static image that allows us 
to perform this task? What assumptions does the visual 
system have to make? 

The apparent difficulty of interpreting specu-
lar reflections 

At first sight, our ability to estimate an object’s 3D 
shape from the reflections in its surface is quite baffling. 
Reflections are extremely unstable. Unlike texture markings 
or shadows, specularities slide over the surface and change 
shape whenever the object, viewer, or environment moves. 
A feature in the surrounding scene, such as a building or 
tree, is generally warped into a complex irregular shape 
when reflected in a specular surface. This makes it ex-
tremely difficult to locate, track, and interpret reflections of 
even quite simple environmental features. 

Furthermore, in the case of a perfect mirror, the image 
consists of nothing more than a distorted reflection of the 
world surrounding the object. Thus, a specular object, such 
as a polished kettle, produces a different image every time it 
is placed in a different scene. Put another way, specular 
surfaces inherit their appearance solely from their envi-
ronment: Every visible feature belongs to the world sur-
rounding the object rather than to the object itself. Thus, 
as the object is moved from scene to scene, the image 
changes dramatically. Despite this, the 3D shape appears 
quite stable, as shown in Figure 2. 

To make matters worse, because the image is just a re-
flection of the world, it is possible to produce almost any 
arbitrary image from a mirrored surface by carefully ma-
nipulating the environment surrounding the object. Thus a 
perfectly smooth object could be made to appear to have 
dents or bumps simply by distorting the scene, and the vis-
ual system would have no way of knowing that it is the en-
vironment rather than the shape that is responsible, be-
cause the image data would be identical. Consequently, 

many possible combinations of shape and scene are consis-
tent with a given image (Figure 3), and yet somehow the 
visual system must reject the infinite false interpretations to 
recover the one correct shape. 

Thus, mathematically speaking, the task of recovering 
an object’s shape from the image reflected in its surface is 
hopelessly ill posed, and surely a difficult perceptual infer-
ence. Indeed, it has even been suggested that it might not 
be possible to solve this problem at all for single static im-
ages (Oren & Nayer, 1996) and that humans are poor at it 
(Savarese, Li, & Perona, in press), although we show here 
that they are not. Despite this, previous psychophysical re-
search has shown that specular reflections generally im-
prove human shape estimation (Blake & Bülthoff, 1990, 
1991; Mingolla & Todd, 1986; Norman, Todd, & Orban, 
2004; Todd & Mingolla, 1983; Todd, Norman, Koender-
ink, & Kappers, 1997), although the relevant image infor-
mation has yet to be identified. How does the visual system 
use specular reflections when they depend so much on the 
world surrounding the object? In what way do specular re-
flections constrain shape? How can the relevant informa-
tion be extracted from the image? 

An alternative way of posing the problem 
In this work, we argue that the apparent difficulty of 

interpreting specular reflections is deceptive, and that it is 
possible to re-pose the problem in terms of simple image 
measurements that are diagnostic of shape but which re-
main relatively stable across changes in the environment. 
We argue that the interpretability of specular reflections 
depends on the particular way in which we conceive of the 
patterns reflected in the object’s surface. By reformulating 
the role of the surrounding world, we show that it is possi-
ble to treat specularities somewhat like surface texture, and 
thus to recover shape from specular reflections by analogy 
to the recovery of shape from texture. 

To make this clear, we will now contrast two ways of 
representing the scene. First, let us consider the surround-
ing environment as a complex physical world composed of 
discrete recognizable objects, such as buildings or trees. To 

 

Figure 2. The image of a mirrored object is simply a reflection of the world surrounding the object. Thus the image changes dramatically
when the object is placed in three different scenes. 

 



Journal of Vision (2004) 4, 798-820 Fleming, Torralba, & Adelson 800 

Figure 3. A given imag
by placing Shape 1 in S

recover shape from 
first have to locate an
a specific environmen
been warped into an
ual system would ha
mation that has been
by the geometry of t
formation is known, 
shape of the surface 
To take a simple exa
while the correspond
straight line, then th
2D curvature in the 
the reflecting surface.

Some variation o
approach in most p
problem (for a revie
ample, in elegant com
(2001, 2002) have sh
the 3D shape of a cu
when a standard ch
surface. 

The primary dis
the visual system can
of an object if it kno
like. Thus, this appro
access to an accurate
least makes strong as
are usually straight). 
not normally confro
scenes. It seems quit
pable of building a 

 

Interpretation 1

+

Interpretation 2

+

Image

Shape 1 Scene 1

Shape 2 Scene 2
 

e of a mirrored object is consistent with many different shapes. For example, the same image could be created
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e unlikely that the visual system is ca-
full model of the environment sur-

rounding an object in a realistic setting. Furthermore, to 
reconstruct a surface by “inverse optics” is computationally 
extremely complex. It is not yet clear how such complex 
computations could be implemented by simple neural 
mechanisms. We reason, therefore, that there must be a 
robust alternative strategy that (i) does not require a model 
of the surrounding environment, and (ii) can be expressed 
in terms of relatively simple image measurements that can 
be readily implemented by known biological substrates. 
The basis of the alternative strategy is to change our con-
ception of the reflected world. 

The intuition is as follows. We argue that the world 
can be treated somewhat like a “texture” whose image sta-
tistics (e.g., amplitude spectrum and distribution of orienta-
tions) are quite well conserved across scenes. Although the 
precise locations of physical structures, such as people or 
trees, change completely from scene to scene, the basic 
“texture” of the world remains quite stable (Field, 1987; 
Dror, Leung, Willsky, & Adelson, 2001; Dror, 2002). 
When this “texture” is reflected in a mirrored surface, it is 
distorted dramatically in a way that depends crucially on 
the surface shape. These distortions lead to continuously 
varying texturelike patterns across the image of the surface, 
which we call “orientation fields.” We argue that the visual 
system can recover strong constraints on the 3D shape of 
the reflecting surface directly from the distorted patterns, 
much as it can recover 3D shape of a textured surface from 
the patterns of distorted texture. This way the visual system 
does not have to interpret the distorted reflections of rec-
ognizable objects, and thus there is no need to construct an 
accurate representation of the scene surrounding the ob-
ject. We have suggested previously that the visual system 
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can treat specular reflections somewhat like textures for the 
purposes of surface reflectance estimation (Fleming, Dror, 
& Adelson, 2003); here we extend the idea to the estima-
tion of shape from specular reflections. 

Before discussing this formulation in detail, we present 
the results of a basic psychophysical experiment on the es-
timation of shape from specular reflections. It is now well 
established that specular reflections aid shape estimation in 
the presence of other cues, such as shading, texture, and 
stereo (Blake & Bülthoff, 1990, 1991; Todd & Mingolla, 
1983; Todd et al., 1997). However, to our knowledge, no-
body has previously isolated this cue by testing our ability 
to estimate shape from purely specular surfaces that are 
reflecting realistic scenes. 

We can derive two simple predictions from the idea 
that the visual system recovers shape directly from the tex-
turelike orientation fields across a specular surface. First, 
subjects should be able to estimate 3D shape accurately 
even when they have no additional information about the 
scene surrounding the object (i.e., when the object is 
cropped out of its original context and shown against a 
neutral background). Second, as long as a scene has suffi-
cient structure, the distorted reflection of the scene should 
produce the characteristic orientation fields across the im-
age. Thus, shape estimation should remain quite good 
across different realistic scenes. These predictions are sup-
ported by the demonstrations in Figures 1 and 2 as the im-
ages yield a vivid impression of 3D shape across changes in 
the reflected scene and in the absence of context. To cor-
roborate this phenomenological evidence, we have con-
ducted a psychophysical shape-estimation task. 

Findings I: Psychophysics 
To measure human 3D shape estimation, we used the 

standard “gauge figure” task (Koenderink, van Doorn, & 
Kappers, 1992; Mamassian & Kersten, 1993, 1996). A 
screenshot of the task is shown in Figure 4(a). Subjects were 
presented with computer generated images of irregularly 
shaped objects with perfectly mirrored surfaces. Their task 
was to adjust the 3D orientation of a series of gauge figures 
to create a map of perceived surface normals. 

Subjects 
Subjects were two naïve observers who were paid for 

participation, and one of the authors (RF). All subjects had 
normal or corrected-to-normal vision. 

Stimuli 
Stimuli consisted of single static images of three irregu-

lar shapes. Each shape was rendered in three different real-
world scenes, making a total of nine conditions. The ren-
dering was performed using a set of “light probes,” which 
were captured photographically from locations in the real 
world (Debevec, 1998; Debevec et al., 2000). Light probes 
are spherical (360 deg x 180 deg panoramic) images that 

capture the set of all rays converging on a point in the 
world. Rendering an object with a real-world light probe 
recreates the image that would be acquired if the synthetic 
object had actually been placed at that location in the 
world. This allows us to render perfectly specular surfaces 
that yield highly realistic images. 

Stimuli were rendered and tone-mapped for display us-
ing RADIANCE (Ward, 1994). The surfaces were repre-
sented as triangle meshes of around 8 x 105 polygons. Sur-
face reflectance was set to an ideal mirror (i.e., a specular 
reflectance gain of 1) with no diffuse reflection, no trans-
mission, and no spread (blur) of the specular component. 
For the purposes of ray tracing, the light probes were 
treated as illumination arriving from infinite distance, as 
described elsewhere (Dror, 2002; Fleming et al., 2003). 
However, the focal point of the observer was set at finite 
distance from the object (i.e., perspective rather than or-
thographic projection). Images were initially rendered at a 
high resolution of 3072 x 3072 pixels, and down-sampled 
by a factor of 8 to 384 x 384 pixels to ensure high image 
quality. The objects were then cropped smoothly out of 
their original contexts and shown against a black back-
ground. 

Procedure 
Prior to the experimental conditions, subjects practiced 

the gauge-figure task with an additional stimulus that was a 
different shape from the experimental stimuli, and which 
was rendered with texture, diffuse shading, and specular 
highlights. 

Experimental stimuli were presented in three blocks. 
Each block consisted of all nine conditions in pseudo-
random order such that consecutive conditions contained 
neither the same shape nor the same light probe. 

For each condition subjects were presented with two 
versions of the same image simultaneously [Figure 4(a)]. 
The left image consisted of an array of all the surface nor-
mals that the subject would adjust. Initially this array was 
set to random 3D orientations at each location. The right 
image showed a single gauge figure for the surface normal 
that the subject was currently adjusting. The first normal to 
be adjusted was picked at random with each new condition 
in every block. The subject adjusted the 3D orientation via 
the mouse. The 2D coordinates of the mouse were intui-
tively mapped into 3D orientation of the normal, so that 
the subject felt that he or she was controlling the 3D posi-
tion of the end-point of the gauge figure’s gnomon. Once 
satisfied with the setting, the subject moved onto the next 
normal in the array by clicking the mouse. Subjects were 
allowed to return to and adjust previous normals in the 
array, although they reported that they generally did not 
choose to do so as they found they could set the normals 
satisfactorily at the first pass. Subjects were given unlimited 
time to perform the task, but took on average between 3 
and 4 s per surface normal. 
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. (a). Screenshot from gauge-figure task. Subjects adjusted gauge-figures to indicate surface normals. (b). Results of one sub-
 Summary data pooled across subjects, illuminations, and shapes. Light blue dots show tilt estimates for which slant < 15 deg
ctive tilt is ill-defined). 
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Results 
In agreement with the demonstrations in Figures 1 and 

2, we found that subjects were generally good at estimating 
the shapes of perfectly mirrored surfaces, even though the 
stimuli were presented without any context to specify the 
scene surrounding the object. 

For the purposes of presentation, the 3D orientation of 
each surface normal can be represented as slant (orienta-
tion in depth) and tilt (orientation in the image plane). 
This is a standard azimuth and elevation representation of 
the hemisphere of possible responses (Stevens, 1983). Note 
that slant ranges from only 0 – 90 deg, while tilt varies from 
0 – 360, hence the greater apparent spread of the data for 
the slant dimension. Note also that tilt is a circular dimen-
sion, which we have unwrapped for graphical purposes. 

Example data from naïve subject RA are shown in 
Figure 4(b). The subject’s estimates of both slant and tilt 
are quite accurate. Viewing the object under a different 
illumination also leads to accurate estimates of both slant 
and tilt. 

Figure 4(c) shows data pooled across shapes, illumina-
tions, and subjects. The green line represents ideal per-
formance; the red line is the best-fit linear regression. Al-
though we found that some shapes yielded slightly better 
performance than others, all measurements were well above 
chance performance. We conclude that subjects can reliably 
and quite accurately estimate the 3D shape of mirrored 
objects in realistic scenes, without any context to specify the 
scene surrounding the object. This suggests (i) that specular 
reflections are a sufficient cue for shape estimation, and (ii) 
that subjects do not need to construct a rich and accurate 
representation of the surrounding scene to recover shape 
from specular reflections. 

Findings II: Theory and image 
analysis 

So far we have argued that the visual system can re-
cover 3D shape directly from the pattern of distorted reflec-
tions across a specular surface. We have shown that sub-
jects can reliably and quite accurately recover the 3D shape 
of purely specular surfaces in the absence of context to 
specify the scene surrounding the object. 

We will now explain in detail how powerful constraints 
on 3D shape can be extracted directly from the continu-
ously varying texturelike patterns found on the surface of 
specular objects. We will first discuss some similarities and 
some key differences between textures and specularities. 
We will then demonstrate how local constraints can be ex-
tracted directly from the image by populations of simple 
oriented filters. Finally, we will measure the reliability and 
accuracy of these constraints for computer generated shapes 
rendered in realistic scenes. 

Similarities and differences between  
specularities and texture 

The idea that 3D space can be depicted using texture 
gradients dates back at least as far as the Renaissance. Since 
Gibson’s (1950a) suggestion that texture gradients provide 
a visual cue to the inclination of a surface, the problem of 
shape-from-texture has received a considerable amount of 
attention both theoretically (e.g., Blake & Marinos, 1990; 
Cutting & Millard, 1984; Clerc & Mallot, 2002; Malik & 
Rosenholtz, 1997; Stevens, 1981; Super & Bovic, 1995; 
Witkin, 1981) and psychophysically (e.g., Buckley & Frisby, 
1993; Cutting & Millard, 1984; Cumming, Johnston, & 
Parker, 1993; Gibson, 1950b; Li & Zaidi, 2000; Rosenholtz 
& Malik, 1997; Todd & Akerstrom, 1987; Todd, Oomes, 
Koenderink, & Kappers, 2004; Zaidi & Li, 2002). 

The basic intuition behind shape-from-texture is de-
picted in Figure 5.  
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Figure 5. The intuition behind shape-from-texture. (a). A 3D
shape coated in texture. In the image, the texture undergoes
compressions due to foreshortening. (b). The pattern of image
compression across the highlighted region of the image is plotted
in blue. The objective slant of the surface is plotted in red. There
is a good correspondence between the compression of the tex-
ture and the slant of the surface. 
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Consider an irregularly shaped object that is covered 
with a stationary isotropic texture, as shown in Figure 5(a). 
In the absence of shading or stereo the image leads to a 
vivid impression of 3D shape. The image information that 
carries this impression is thought to be the distinctive pat-
terns of compression and rarefaction of the texture across 
the image. We can plot the degree of texture compression 
across the highlighted region, as shown in Figure 5(b). Su-
perimposed on this plot is the objective slant of the surface 
at the corresponding points on the 3D model. We can see 
that there is a strong correspondence between the slant of 
the surface and the compression of the texture in the im-
age. The important point is that there is a systematic rela-
tionship between the pattern of distortions in the image 
and some property of the 3D shape of the surface. 

This basic intuition can be extended to specular sur-
faces. If we examine a specular surface that is reflecting a 
realistic environment, we see that the reflected world is dis-

torted into patterns of compression and rarefaction by the 
geometry of the surface. As with the case of texture, there 
appears to be some systematic relationship between the 
properties of the shape and the degree of compression of 
the reflected world. If this is the case, then in principle the 
visual system can recover properties of the 3D shape simply 
by measuring the patterns of distortion across the shape, 
much as it does with shape-from-texture. This is the intui-
tion behind our formulation of the recovery of shape from 
specular reflections. 

It is important to appreciate, however, that this is only 
an analogy between textures and specularities. The rules 
that relate 3D shape to the patterns of distortion are differ-
ent for shape-from-texture and “shape-from-specularities.” 
We will now demonstrate these differences. 

Figure 6 contains an ideal planar surface that is rotated 
in depth. Note that when a plane is rotated in depth, the 
first derivative of surface depth changes, but higher deriva-
tives remain constant at zero. In the left column, the sur-
face is coated with a stationary isotropic texture; on the 
right, the surface is a perfect mirror. When we rotate the 
textured surface away from fronto-parallel, the correspond-
ing texture elements in the image become compressed due 
to foreshortening. However, in the case of the mirror, as 
the surface rotates, all that happens is that the mirror se-
lects different parts of the surrounding world and projects 
them into the image; the reflection is not compressed in 
any way [see Figure 7(a)]. Thus, in the case of textures, 
compression is a function of the first derivative of the sur-
face, but in the case of mirrors it is not.1 

 

Textured Mirrored

Figure 6. A planar surface at 30°, 60°, and 80° slant. In the first
column the surface is coated in stationary isotropic texture. In the
second column the surface is a perfect mirror. Note that the tex-
ture becomes increasingly compressed by foreshortening. How-
ever, the reflection in the mirror is not compressed at any surface
orientation. 

F
c
t
g
a
p
t
f

Planar surface Curved surface

igure 7. The geometry of mirror reflection for planar (a) and
urved surfaces (b). The gray region represents the angular por-
ion of the environment that is reflected into the image. The lar-
er this angle, the greater the degree of compression of the im-
ge. (a). Note that rotating the flat plane has no effect on the
roportion of the world compressed into the image. (b). By con-
rast, compression increases dramatically as a function of sur-
ace curvature. 
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In Figure 8, we consider what happens with a curved 
surface. Again, in the left column the surface is coated in 
texture, while on the right, the surface is a perfect mirror. 
Let us start with the sphere. In the case of the textured sur-
face, there is a slight compression of the texture toward the 
edge of the sphere. This is because the first derivative of the 
surface increases as we move from the center to the edge of 
the sphere. In the case of the mirror, the image of the re-
flected world is also compressed. However, this compres-
sion has a different cause. A highly curved surface “sees” 
(i.e., points at) more of the world than a slightly curved sur-
face, as shown in Figure 7(b). Thus, a surface with a large 
second derivative compresses a large angle of incident di-
rections into a small portion of the surface. The more 
curved the surface, the greater the compression. If we con-
ceive of the reflected world as a texture, then the degree of 
compression of the texture elements in the image is directly 

related to the second derivative of the reflecting surface. 
Note that in the middle of the sphere, the second de-

rivative of the surface is equal in all directions and thus the 
image is equally compressed in all directions. However, to-
ward the edge of the sphere, the second derivative is large in 
the direction perpendicular to the circumference, but zero 
in the direction parallel to the circumference. Hence, the 
reflection gets stretched into concentric streaks toward the 
edge of the sphere.2 

To emphasize this relationship between the second de-
rivative and image compression, let us consider what hap-
pens when the sphere is elongated into an egg-shape. In the 
case of the textured surface, when the egg is elongated all 
that happens is that more texture elements are recruited 
onto the surface. Because there is a small difference in the 
first derivatives, the texture is slightly less compressed along 
the principle axis of the egg. However, in the case of the 
mirror, there is a much more dramatic effect. In the direc-
tion of high curvature, the mirrored egg compresses many 
features from the world into a small portion of the image. 
By contrast, in the direction of low curvature, the surface 
compresses a relatively small angle of the surrounding 
world into a relatively large region of the image. Thus, the 
reflections are effectively stretched into parallel streaks 
along the direction of minimum curvature. Importantly, 
this means that surfaces that are anisotropic in curvature 
tend to produce patterns that are anisotropic in the image. 
The degree and direction of the anisotropy in the image 
carry information about the second derivatives at the corre-
sponding location on the surface. This is the basis of the 
theory that we discuss in greater detail below. Previous re-
searchers have noted that highlights are elongated along 
directions of minimum surface curvature (Beck & Prazdny, 
1981; Blake & Brelstaff, 1988). Here, however, we elabo-
rate in detail how the visual system can exploit this effect to 
recover constraints on 3D shape. 

Textured Mirrored

To summarize: 
(i) For textures, the compression in the image is a 

function of the first derivative of the surface.  
(ii) For specular reflections, the compression in the 

image is a function of the second derivative of 
the surface. 

The dependency of specular reflections on the second 
derivative of the surface generally leads to characteristic 
anisotropies in the image. Specifically, whenever the mini-
mum and maximum second derivatives are different, the 
reflected world is stretched in the direction of minimum 
surface curvature. In the extreme this leads to a characteris-
tic pattern of striations along the direction of minimum 
second derivative, which we argue provides strong local 
constraints on 3D shape. Below, we also discuss how the 
different mappings can be used to distinguish between tex-
tures and specular reflections, but first we consider how the 
image compressions can be extracted from the image. 

Figure 8. A sphere gradually elongated into an egg shape. In the
left column the surface is textured; in the right column it is mir-
rored. Note that the texture is not preferentially stretched along
the egg. By contrast, the reflected scene becomes stretched
because of the lesser curvature along the vertical axis. 
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Extracting constraints on 3D shape using a 
population of oriented filters 

We will now demonstrate how a population of simple 
oriented filters can measure local anisotropies, and, there-
fore, make image measurements that are directly related to 
3D shape. For demonstration purposes, we will place mir-
rored surfaces in a synthetically generated scene with 
known image statistics, specifically, random noise with a 
1/f amplitude spectrum.3 Note that this texture contains no 
recognizable objects, such as buildings or trees. We will 
consider the responses of a population of local image op-
erators (filters) that are tuned to different image orienta-
tions (the details of these filters are described below). 

Consider the spherical mirror in Figure 9(a). As we 
have already argued, a curved surface compresses many fea-
tures from the world into a small portion of the image. 

Thus the reflection of the noise is “miniaturized” in the 
surface of the sphere. However, at the center of a sphere, 
the compression is equal in all directions because the sur-
face is equally curved in all directions. This means that 
there is no preferential stretching of the reflected texture in 
the image. Thus the close-up of this region contains a broad 
distribution of orientations, just as the surrounding world 
does. Let us consider the responses of the population of 
filters to the close-up of the surface. Because the close-up 
contains features at all orientations, all the filters in the 
population respond approximately equally strongly. The 
approximately flat population response indicates that the 
second derivative in the middle of the sphere is equal in all 
directions. 

As before, we will now elongate the sphere into an egg-
shape, which is highly curved in one direction and less 
curved in the orthogonal direction [Figure 9(b)]. As before, 
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Figure 9. Mirrored surfaces in a world of 1/f noise, with responses of a population of oriented filters to the reflections. (a) A spherical
mirror. (b) and (c) Egg-shaped mirrors. Note that the population response exhibits a peak that is aligned with direction of minimum sur-
face curvature. Peak size increases with surface anisotropy. 
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the image is compressed in the direction of high curvature, 
and smeared out, by comparison, in the direction of low 
curvature. This smearing affects the orientations present in 
the close-up. Specifically, the reflected features become 
elongated into parallel diagonal streaks. Filters that are or-
thogonal to the streaks respond more weakly, while filters 
that are aligned with the streaks respond more strongly. 
Thus, the population response becomes peaked at the 
dominant image orientation. 

Importantly, both the size and orientation of the popu-
lation peak are directly related to the local 3D shape of the 
surface. To demonstrate this, we will rotate and elongate 
the egg to create the shape in Figure 9(c). 

First consider what happens to the location of the peak 
response. By rotating the egg, we change the direction of 
minimum surface curvature. Recall that the reflection is 
most stretched in the direction in which the surface is least 
curved. Thus, when the direction of minimum surface cur-
vature changes, the streaks rotate with the object. Accord-
ingly, filters that were previously aligned with the streaks 
become suppressed, while different filters become en-
hanced, which causes the peak of the population response 
to shift. Thus, the orientation of the population peak pro-
vides a direct estimate of the direction in which the second 
derivative of the surface is smallest, which for brevity, we 
will call the direction of minimum second derivative. 

Second, consider what happens to the size of the peak 
response. By elongating the egg, we have also changed the 
ratio between the minimum and maximum second deriva-
tives. This exaggerates the stretching of the reflection, 
which makes the image more streaky, as shown in the close-
up. Accordingly, the filters that are aligned with the streaks 
become enhanced, while the orthogonal filters become in-
creasingly suppressed. Thus, the size of the population peak 
serves as a direct estimate of the relative magnitudes of the 
maximum and minimum second derivatives, which for 
brevity, we call surface anisotropy.4 

Population codes are stable across realistic 
scenes 

We have argued that a population of filters can esti-
mate some local curvature properties of simple shapes, such 
as eggs, when placed in a standard scene with known statis-
tics. However, can this theory be applied to arbitrary, com-
plex shapes viewed in realistic scenes? For complex objects, 
the second derivative changes continuously across the sur-
face. Accordingly, a simple feature in the real world, such as 
a straight line, can be warped into complex patterns in the 
image. How can the visual system decode these complex 
distortions without knowing the shape of objects that are 
reflected in the surface? 

We have been arguing that the visual system does not 
attempt to interpret the warped reflection of recognizable 
environmental features. Rather, it simply treats the dis-
torted reflections as a continuously varying “texture.” It is 
the continuous variation in the orientation content of this 

texture that carries information about 3D shape. Specifi-
cally, we are suggesting that the visual system could apply 
the population coding strategy simultaneously at all loca-
tions in the image, to recover the direction and relative 
magnitude of the second derivative at all visible locations 
on the surface. For this to be a viable hypothesis, the way 
that the reflections “flow” across the image has to depend 
more on the shape of the object than on the reflected 
scene. 

In this section we discuss the stability of reflections 
across changes in the scene that is being reflected in the 
surface. Before discussing empirical measurements, we will 
demonstrate the basic intuition. Consider the irregular 3D 
shape in Figure 10. The surface is shown reflecting three 
different scenes. At first sight the reflections of these three 
scenes in the surface look quite different. However, if we 

Figure 10. The orientation structure of mirrored surfaces. The top
row shows a mirrored surface in three different scenes. Bottom
row shows output of simple edge-detecting algorithm. Note that
the dominant edge orientation remains quite stable across
scenes. 
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pass the image through a simple edge-detecting algorithm, 
we see distinctive patterns of image orientation across the 
image, which are remarkably well conserved across the 
scenes. We suggest that the visual system uses these charac-
teristic “orientation fields” as a cue to 3D shape. The fact 
that orientation fields can remain quite stable across scenes 
could account for the stability of 3D shape perception 
across changes in the reflected scene. 

To test this idea empirically, we computer generated 
nine mirrored objects with different 3D shapes but identi-
cal silhouettes. We rendered each shape under nine differ-
ent Debevec light-probe illuminations, generating a 9x9 
grid of images. Example images are shown in Figure 11. We 

then calculated the responses of a population of oriented 
filters at each location in every image. 

The model population of filters consisted of a simple, 
local first-derivative operator (i.e., a small odd-symmetric 
filter with only a single positive and a single negative lobe) 
that was “steered” through 24 equal orientation steps be-
tween 0 and 180 deg. The filters measure orientation en-
ergy, which is phase insensitive (i.e., they do not respond to 
the contrast polarity of the intensity variations, only to the 
orientation). 

The implementation of the steerable pyramid algo-
rithm that we used is described elsewhere (Simoncelli, 
Freeman, Adelson, & Heeger, 1992; Simoncelli & Free-

Shape A Shape B
(a)

(b)
(c)

 

Figure 11. (a) Two shapes rendered in three different scenes, with corresponding orientation maps. Hue denotes peak orientation (es-
timated direction of minimum curvature), saturation denotes size of peak (estimated surface anisotropy). (b) and (c) Objective orienta-
tion maps, derived from shape model. Hue represents objective direction of minimum curvature, saturation represents objective surface
isotropy. 
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man, 1995), and is available online at http://www 
.cis.upenn.edu/~eero/steerpyr.html. The steerable pyra-
mids were built in the space domain (as opposed to the 
spatial frequency domain), using the command 
buildSpyr. We derived population measurements from 
the distribution of responses across the 24 different filter 
orientations at each image location. Because the filters sim-
ply measure the local derivative in image intensity, they 
operate at the finest possible spatial scale. We also tested 
filters at other scales and obtained comparable results. 

The result for each image is an “orientation field,” 
which plots the population response at every image loca-
tion. Example orientation fields are shown as color plots in 
Figure 11. We represent the orientation of the peak popu-
lation response using hue; thus, for example, red means 
that the dominant local image orientation is vertical. We 
represent how defined the population peak is using color 
saturation.5 Thus, where the population peak is ill defined, 
the orientation map washes out to white, whereas, where 
the peak is clearly defined, the colors become vivid. Note 
that the orientation field can be thought of as an estimate 
of the direction of minimum second derivative and surface ani-
sotropy at every visible location on the object’s surface. 

We have found that orientation fields are diagnostic of 
shape, and remain quite stable as the object is moved from 
scene to scene. For example, in Figure 11, the orientation 
maps of Shape A are extremely similar across scenes, and 
quite different from those of Shape B. On average, pairs of 
orientation maps were well correlated if they originated 
from the same shape, even though the shapes were ren-
dered in different scenes (population peak orientation: r2 = 
0.92; population peak size: r2 = 0.67). By contrast, orienta-
tion maps were significantly less well correlated when the 
shape varied, even when the surrounding scene was held 
constant (population peak orientation: r2 = 0.79; popula-
tion peak size: r2 = 0.30).6 

This shows that although moving a specular object into 
a different scene can dramatically change the patterns of 
light and darks across the surface, the “texturelike” patterns 
remain surprisingly stable. Put another way, although the 
luminance content of the image varies considerably with the 
reflected scene, the orientation content of the image remains 
relatively stable across scenes. Thus the visual system can 
rely on orientation fields to provide reliable information 
about 3D shape, as an object is moved around in the world. 

Population codes provide accurate  
information about shape 

We have shown that the orientation field for a given 
shape is quite stable across changes in the scene. But do 
orientation fields provide accurate information about 3D 
shape? Recall that orientation fields constitute an estimate 
of the direction of minimum second derivative and the surface 
anisotropy at each visible location on the object’s surface. 
Are these estimates accurate? How do they compare to the 
objective curvatures of the 3D shape model? We will now 

evaluate how well orientation fields estimate 3D curvatures 
by comparing the estimates with the objective values de-
rived directly from the 3D shape model. 

For comparison, objective second derivatives can also 
be displayed as color plots. This time, hue represents the 
objective direction of minimum second derivative (as op-
posed to the estimate derived from the image). Likewise, 
color saturation represents the objective anisotropy of the 
surface. Example objective orientation maps are shown in 
Figure 11(b) and 11(c). The correspondence between the 
objective and estimated orientation fields is quite striking 
for both Shape A and B. 

We measured the error between objective directions of 
minimum second derivative and the population estimates 
at every pixel location for every image in the 9x9 grid. A 
histogram of errors is shown in Figure 12(a). Note that the 
distribution of errors is peaked around zero, and 74.78% of 
estimates fall within 30 deg of the correct value. 
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Figure 12. (a) Error between estimated and objective direction of
minimum second derivative for all images in the 9x9 grid. (b) Er-
ror between estimated and objective surface anisotropy. 
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Likewise we measured the error between estimated and 
objective surface anisotropy for every image [Figure 12(b)]. 
Again the distribution peak is close to zero, and 80.64% of 
estimates fall within 33.3% of the correct value. 

We conclude that simple image measurements are ca-
pable of providing the visual system with reliable and accu-
rate estimates of the direction of minimum second deriva-
tive and surface anisotropy at every visible location on a 
specular surface. Because these measurements remain quite 
stable across scenes, the visual system does not need to es-
timate the environment surrounding an object to recover 
3D shape. Thus, specular reflections are easier to use for 
shape estimation than previous computational work would 
suggest. 

Discussion 
It is commonly believed that visual perception is 

achieved by a process of “inverse optics” (Helmholtz, 
1867/1962; Poggio, Torre, & Koch, 1985), in which the 
visual system reverses the physics of image generation to 
infer the outside world from an image. When posed this 
way, recovering the shape of a mirror is extremely difficult 
because all visible features belong to the environment sur-
rounding the object, rather than to the object itself. It 
would seem that the visual system would have to form an 
extremely sophisticated model of the environment to re-
cover the object’s underlying shape. However, we have 
shown that the problem can be reformulated in terms of 
image measurements that are diagnostic of shape but which 
remain quite stable as the object is moved from scene to 
scene. This way, early visual processes could estimate curva-
ture properties directly from the image, without having to 
build an explicit representation of the environment.7 

The results of our psychophysical experiment show that 
subjects are good at recovering the 3D shape of perfectly 
mirrored objects. This can be contrasted with previous 
claims (Oren & Nayer, 1996; Savarese et al., in press). 
There are two notable aspects of the result. First, the fact 
that performance was good in the absence of any context 
implies that the image local to the surface of the object 
provides sufficient information to perform the task. Sec-
ond, the fact that performance was good across changes in 
the reflected scene suggests that the information used by 
the visual system is relatively stable across image variations 
that are due to the scene. 

To account for these results, we proposed that the vis-
ual system recovers shape from the patterns of distortion 
that occur when the world is reflected in a curved surface. 
Rather than evaluating the distortion of specific environ-
mental features, the visual system can treat the image as a 
continously varing texture whose statistics are determined 
by the 3D shape. The advantage of this is that 3D curvature 
properties can be estimated directly from the distribution 
of orientations passing through each location in the image, 

without having to represent the environment surrounding 
the object. 

We have shown that these image measurements can be 
performed by populations of simple local filters. Specifi-
cally, a population of filters tuned to different image orien-
tations produces a peak response that is closely aligned with 
the direction of minimum second derivative. The relative 
magnitude of minimum and maximum second derivatives 
is specified by how well defined the population peak is. 
When applied in parallel to all image locations, we have 
shown that this population coding strategy provides accu-
rate estimates of 3D curvature properties across a range of 
real-world scenes. It is worth noting that these measure-
ments are at least biologically plausible, as it is well known 
that primary visual cortex contains cells that are tuned to 
different image orientations (DeValois, Yund, & Hepler, 
1982; Hubel & Wiesel, 1959, 1962, 1968; Schiller, Finlay, 
& Volman, 1976). 

The ambiguity of orientation fields 
It is important to clarify that orientation fields provide 

a field of local constraints on 3D shape; they do not in 
themselves constitute a complete estimate of the shape 
model. Indeed, multiple 3D shapes are consistent with a 
given orientation field. We will now discuss some of the 
ambiguities that remain to be resolved. 

Local image anisotropy does not specify the sign of local 
surface curvature (i.e., there is concavity vs. convexity ambi-
guity). This ambiguity is not unique to the interpretation of 
specular reflections: It is well known that shape-from-
shading suffers from a similar limitation (Kardos, 1934; 
Ramachandran, 1988, 1990). There are a number of ways 
that this ambiguity might be resolved. First, it is generally 
believed that the visual system has a built-in preference (or 
“prior”) for convex interpretations (Hill & Bruce, 1993, 
1994; Langer & Bülthoff, 2001; Mamassian & Landy, 
1998; Symons, Cuddy, & Humphrey, 2000; Woodworth & 
Schlosberg, 1954). This prior may help to disambiguate the 
global sign of curvature of the object. 

Second, enforcing mutual consistency between local in-
terpretations is likely to reduce the number of possible in-
terpretations quite dramatically, especially if the bounding 
contour of the shape is used to provide additional con-
straints (Howard, 1983; Koenderink, 1984). Li and Zaidi 
(2000) have shown that for textured surfaces, convexities 
and concavities lead to distinct orientation field patterns. It 
seems likely that a similar argument also applies to orienta-
tion fields generated by specular reflections. Although each 
local measurement is ambiguous in isolation, the patterns 
made by entire fields of local measurements seem to carry 
the necessary information. 

Indeed, more generally there appears to be something 
about the global structure of orientation fields that carries 
information about the global form of the underlying sur-
face. It is important to note that orientation fields are 
highly organized. Orientation varies smoothly across the 
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image as the distorted reflections twist and turn across the 
surface. It seems to be the organization of these patterns that 
specifies 3D shape. However, at present we do not know 
how to characterize this information. 

Of course, any transformation that preserves the direc-
tion of minimum second derivative and the ratio of mini-
mum to maximum second derivatives will, by definition, 
leave the orientation field unchanged. Examples of such 
transformations include scaling along the line of sight and 
affine shearing. If the orientation field remains constant, 
then the visual system would clearly require additional in-
formation to distinguish between shapes that are related to 
one another by these transformations. 

However, as we have already stated, we are not claiming 
that orientation fields are the sole source of information 
about shape that can be derived from specular reflections, 
nor that orientation fields are the underlying “representa-
tion of shape” in the human visual system. Rather, our 
claim is that there exists a source of information that can 
be extracted from the image by relatively simple measure-
ments, without reference to the objects surrounding the 
surface of interest. This information provides strong con-
straints on 3D shape. 

Interactions with the occluding boundary 
When we look at the image of an entire object, we see 

not only the internal structure of the surface, but also the 
“occluding contour” — the boundary of the object where 
the surface curves out of view. This contour also carries 
information about 3D shape (Koenderink, 1984). Is it pos-
sible that the impression of 3D shape that we get from mir-
rored objects results primarily from the occluding contour? 

Figure 13 suggests that this is unlikely. All four images 
have identical silhouettes, but the impression of 3D shape 
is very different. The three images that contain specular 
reflections look vividly more volumetric than the silhouette 
alone, and also look strikingly different from one another. 
This suggests that orientation fields carry more information 
about 3D shape than the bounding contour alone. 

However, although the occluding contour is not a suf-
ficient cue on its own, we believe it can provide extremely 
useful boundary conditions on the interpretation of orien-
tation fields. Furthermore, for closed, globally convex ob-
jects, the orientation field becomes more reliable closer to 
the occluding boundary. The reason for this is that the sec-
ond derivative of the surface increases as the object curves 
out of view. This suggests that removing the occluding 
boundary should have a detrimental effect on perceived 3D 
shape. 

 In Figure 14, we take a couple of objects and remove 
the occluding boundary by cropping regions from the mid-
dle of the image using an irregularly shaped outline. Most 
observers agree that the vividness of the sense of 3D shape 
is reduced by this manipulation in images (c) and (d). 

Nevertheless, it is difficult to know how much of this 
effect is due to the occluding contour per se, and how 

much is due to the fact that cropping the image invariably 
removes some of the orientation field as well. In images (e) 
and (f), the same objects are shown cropped with a larger 
contour. These images yield a somewhat more compelling 
sense of 3D shape, even though the occluding boundary is 
still absent from the image. Many of the recesses and bulges 
become visible, and we regain the impression that some 
parts of the surface are closer to us than others. Thus, the 
occluding contour is not necessary for the recovery of shape 
from distorted reflections, although it certainly plays an 
important role. 

Beyond mirrors 
How general is the strategy that we have outlined? We 

have shown that simple image measurements can recover 
certain shape properties from perfect mirrors, but most ob-
jects in the world are not perfectly mirrored. Most materials 
scatter light in many directions and do not form perfect 
images of the world on their surfaces. How can our pro-
posal be generalized to deal with a wider range of materials? 

We will now consider two possibilities. The first possi-
bility is that the visual system might be able to separate 
specular reflections from other surface properties (such as 
shading and texture), and apply the proposed measure-
ments only to the specular component. If the visual system 
could somehow “skim off” the specular component of the 
image, then its orientation measurements would be uncon-
taminated by other surface properties. This way the visual 
system could apply our proposed strategy to any material 

 

Figure 13. Four images with identical silhouettes, but dramati-
cally different apparent 3D shapes. The silhouette alone leads to
only a weak sense of 3D shape when compared to the other
three images. 
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that has a specular component of reflection (e.g., a granny 
smith apple), and not only to perfect mirrors. 

How plausible is this? It is important to note that the 
image of a glossy surface (such as plastic, or glazed ceramic) 
can be expressed as a simple linear sum of two component 
images: the matte component and the specular component. 
Put another way, specular reflections are additive: they are 
like a transparent layer superimposed on the underlying 
surface. Indeed, specular reflections can be thought of as a 
special case of Metelli’s (1974) transparency.8 It is well 
known that the visual system can separate images of trans-

parent surfaces into the contributions of the background 
layer and the transparent filter through which it is visible 
(Adelson, 1999; Anderson, 1997; Heider, 1933; Koffka, 
1935; Metelli, 1974; Singh & Anderson, 2002). We suggest 
that it is not unlikely that the visual system could separate 
specular reflections from the “background” surface that is 
visible through them. We discuss the separation of specu-
larities from texture in greater detail below. 

(a) (b)

(c) (d)

(e) (f)

A second possible generalization could be that the vis-
ual system does not need to separate specular reflections 
from other types of surface reflectance. If other surface re-
flectance properties (e.g., diffuse shading) also lead to simi-
lar distinctive patterns of orientation across the image, then 
the orientation measurements that we have proposed could 
be robust across changes in surface reflectance, as well as 
across changes in the reflected scene. 

The images in Figure 15 suggest that under some cir-
cumstances, orientation fields can be quite stable across 
changes in surface reflectance properties. Figure 15(a) 
shows a mirrored surface and its orientation field. The sur-
face in 15(b) is a glossy plastic. Note that the detailed struc-
ture of the specular reflections is lost: the specularities are 
mere “highlights.” Despite this, the orientation field con-
tinues to resemble the orientation field derived from the 
mirrored surface. In (c) we have roughened the surface so 
that the highlights become blurred. However, this blurring 
has little effect on the distribution of orientations at each 
image location, and thus the orientation field remains quite 
stable. This suggests that to use specular reflections for 
shape estimation, the visual system might not have to sepa-
rate them from the underlying surface. 

Previously, a number of authors have argued that the 
visual system could use the orientation structure of shaded 
images to estimate shape from shading. For example, 
Koenderink and colleagues have long argued that it is the 
“pattern of isophotes” across a diffuse surface that the vis-
ual system uses to recover shape from shading (e.g., 
Koenderink & van Doorn, 1980; Koenderink & van 
Doorn, 2003). More recently, Zucker and colleagues (e.g., 
Ben-Shahar & Zucker, 2001; Breton & Zucker, 1996; Hug-
gins, Chen, Belhumeur, & Zucker, 2001) have repeatedly 
argued that shape-from-shading ought to be based on 
“shading flow.” They note that diffuse shading leads to ori-
entation fields that are stable across changes in albedo and 
cast shadows, and that these orientation fields can be used 
for the shape estimation and edge classification. 

Figure 14. Effects of removing the occluding boundary on appar-
ent 3D shape. (a) and (b), show original images. Red outlines
indicate the regions that are cropped out in the following two
panels. Note that when a small region is cropped out as in (c)
and (d), the 3D shape percept is considerably impaired. How-
ever, when a larger region is cropped out, as in (e) and (f), the
image largely regains its 3D appearance, even though the true
occluding boundary is still missing from the image. 
 

The orientation structure of shaded images is difficult 
to see because shading is so smooth. However, in Figure 16, 
we show the isophotes across a shaded Lambertian surface. 
This reveals the latent orientation structure of the image. 
These orientation patterns exhibit some clear similarities to 
the distorted reflections across the mirrored surface. 

It is important to note that the orientation structure of 
shaded images is much less stable than for mirrored sur-
faces. Changing the direction of illumination can distinctly 
alter the pattern of isophotes across a shaded surface 
(Koenderink & van Doorn, 1980). However, the important 
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(a) Mirror

(b) Smooth plastic

(c) Rough plastic

 

Figure 15. The population coding strategy generalizes to non-
mirrored surfaces. (a) A mirrored surface. (b) A smooth plastic
surface. (c) A rough plastic surface. Orientation maps remain
quite stable across changes in material. 
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point is that the orientation structure of the images appears 
to carry information about 3D shape. We suggest, then, 
that specular highlights and diffuse shading may not pro-
vide fundamentally different cues to shape. Rather, they 
appear to operate with the same basic currency—orientation 
fields that can be extracted from the image by relatively 
simple image measurements. 

Using orientation fields to distinguish  
between textures and specularities 

As we have already mentioned, textures and specular 
reflections have some things in common. Both lead to sto-
chastic patterns in images that undergo compressions and 
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(a) Lambertian surfaces

(b) Isophotes

(c) Mirrored surfaces

 

igure 16. Revealing the latent orientation structure in diffuse
hading. (a) two objects with diffuse reflectances. (b) Isolumi-
ance contours of the images in (a). (c) Specular surfaces are
resented for comparison. Note the similarities between the ori-
ntations in (b) and (c). 
arefactions that depend on 3D shape. And yet the visual 
ppearance of a matte, textured surface is quite distinct 
rom a glossy, specular surface. How can we tell them apart? 

Under normal viewing there are many ways of distin-
uishing texture markings from specular reflections, includ-
ng luminance or color information (Ullman, 1976; 
linker, Shafer, & Kanade, 1988; see also Yang & Ma-

oney, 2001); binocular disparities (Blake & Brelstaff, 1988; 
lake & Bülthoff, 1990, 1991), and characteristic motion 

ields (Koenderink & van Doorn, 1980; Oren & Nayer, 
996). A particularly vivid demonstration of the role of 
otion has been developed by Hartung and Kersten (2002, 

003). They have shown that distorted mirror reflections 
an be made to look like a pattern painted on a surface 



Journal of Vision (2004) 4, 798-820 Fleming, Torralba, & Adelson 814 

simply by changing the way that they move when the object 
rotates. When the features slide across the surface, like well-
behaved specularities, the object appears to be mirrored. 
However, when the same features are “attached” to the sur-
face during motion, the appearance of the material changes 
dramatically, becoming matte and patterned rather than 
glossy. This is particularly impressive given that any single 
frame from the motion sequence leads to a vivid impres-
sion of a mirrored surface when viewed statically. 

Mapped as texture Mapped as reflection

We have previously suggested that specular reflections 
of real-world scenes have characteristic image statistics (e.g., 
heavily skewed pixel histogram) that could help the visual 
system to distinguish reflections from textures (Fleming et 
al., 2003). Here we suggest that there is an additional cue 
that results from the different ways that textures and specu-
lar reflections are distorted by 3D shape. 

Recall that the compression of textures depends (pri-
marily) on the first derivative of the surface, while the com-
pression of specularities depends on the second derivative 
of the surface. This means that a given shape will generally 
lead to different orientation fields in the image depending 
on whether it is glossy or coated with texture. In Figure 17, 
we demonstrate that this distinction can influence our 
sense of material quality.9 Figure 17. Apparent surface qualities can be influenced by the

way that features are mapped onto the surface. In the left col-
umn the patterns are mapped according to the rules for texture.
In the right column, similar patterns are warped onto the surfaces
according to the rules for specular reflection. Observers gener-
ally agree that the images on the right look somewhat more
glossy than the images on the left. 

When a pattern is mapped onto the surface according 
to the rules for texture, the surface appears matte and 
painted (Figure 17, left column). By contrast, when the pat-
terns are warped onto a surface according to the rules for 
reflection, the surface becomes somewhat more glossy-
looking, even though the statistics of the patterns are 
unlike the real world (Figure 17, right column). Note that 
multiple factors can influence the apparent glossiness of the 
surface, especially the statistics of the patterns themselves. 
Here we have used patterns with ambiguous statistics in an 
attempt to isolate the source of information that comes 
from the distortion of those patterns across the surface. 

One final example 
We will now consider one final case to emphasize the 

circumstances under which textures and reflections lead to 
distinct orientation fields. Recall that reflections are com-
pressed along directions of high curvature, while textures are 
compressed along directions of high slant. This means that the 
two orientation fields will be most different in shapes for 
which these two directions are most different. An example 
of such a shape is shown in Figure 18. 

Along the longitudinal axis of the tube, surface curva-
ture is zero, while around the circular cross-sections of the 
tube, the surface is quite highly curved. This means that 
glossy reflections tend to stretch along the tube, so that the 
orientation field is aligned with the long axis. In (a) we 
show the glossy surface and in (b) we show the dominant 
image orientation at each location across the surface. 

Note that in the central bend of the object, the long 
axis of the tube slants away from the observer. This is inter-
esting as it means that the direction of maximum curvature 

is almost perpendicular to the direction of maximum slant. 
When the surface is textured, as in (c), the orientation field 
will tend to be compressed into parallel rings that cut across 
the tube instead of running along it. This is shown in (d). 
To emphasize the difference, we can superimpose the two 
orientation fields, for this region of interest, as shown in 
Figure 19. 

It is striking that both orientation fields lead to a vivid 
impression of 3D shape, although they are markedly differ-
ent. If the visual system could somehow separate specular 
reflections from the underlying texture, then it could use 
the complimentary orientation fields as two convergent 
cues to the object’s 3D shape. Furthermore, the fact that 
orientation fields for textures and reflections can be so 
different may open the possibility of using image 
orientations themselves to distinguish between textures and 
reflections, even when they are directly superimposed in 
the image. This represents an interesting avenue for future 
research.

However, what is becoming clear is that the continu-
ously varying orientation structure of images contains a wealth 
of information about the world, which remains to be fully 
explored. Orientation fields can carry reliable information 
about 3D shape and surface properties. Thus, populations 
of oriented filters can achieve much more than simple edge-
detection. 
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Conclusions 
Many materials, including water, leaves, plastics, glazed 

ceramic, and metals exhibit specular reflections. It is well 
known that specular reflections aid shape perception, but 
the relevant image information has not previously been 
identified. Here we have presented a theory of how specu-
lar reflections could provide constraints on 3D shape. 

At first sight, it is quite surprising that we can recover 
an object’s shape from the distorted reflection of the world 
in its surface. As we noted in the “Introduction,” the image 
of a perfectly specular object changes completely when the 
object is moved from scene to scene. Furthermore, to in-
terpret the distorted reflection of an environmental feature 
(e.g., the warped image of a tree), it seems that the visual 

system 
feature.
would n
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(a) Glossy tube

(d) Orientation field of 
      textured tube

(b) Orientation field of 
      glossy tube

(c) Textured tube

Figure 18. Textured and glossy versions of a tube-shaped object
with corresponding orientation fields. Note that the orientation
fields are distinctly different, especially in the region of the hori-
zontal bend in the tube. 
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9. Orientation fields for texture (purple) and reflections
 shown superimposed to emphasise the differences.
t at almost all locations, the two orientations fields have
orientations. 
would have to know the undistorted shape of that 
 In other words, it seems that the visual system 
eed access to a complete model of the world sur-
g the object. 
ever, we have argued here that strong constraints 

e can be extracted directly from the image of a sur-
thout reference to the surrounding world. Specifi-
 argued that the visual system treats specular reflec-
mewhat like a “texture” that is warped onto the 

 Thus the visual system can recover shape from 
ities by analogy to the way that it recovers shape 
ture. 

 have shown, however, that there is an important 
ce between textures and specular reflections. A 
analysis of the geometry of projection reveals that 
pression of texture is due largely to the slant of the 
(i.e., first derivative), while the compression of 
 reflections depends on the rate at which the sur-
rmal changes across the image (i.e., second deriva-
e intuition behind this is that a highly curved sur-

es” (i.e., points at) more of the reflected world than 
y curved surface and thus compresses more features 
 same portion of the image. Importantly, when the 
has different curvatures in different directions, the 
ns become dramatically distorted. In the extreme, 
ge is stretched into parallel streaks along the direc-

inimum second derivative. 
 then showed how these distortions can readily be 
d from the image by a population of filters tuned to 
t orientations. We showed that 
) the peak of the population response tends to align 

with the direction of minimum second derivative, 
while  

i) the size of the population peak indicates the ratio 
of maximum to minimum second derivatives.  
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The continuously changing curvatures across a complex 
shape lead to complex “texturelike” patterns across the sur-
face of a specular object, which we call “orientation fields.” 
We argued that these orientation fields provide strong con-
straints on 3D shape. 

We studied the orientation fields of specular surfaces 
that were rendered under a range of real-world scenes. We 
found that orientation fields provide accurate estimates of 
3D curvature properties that remained surprisingly stable 
across changes in the reflected scene. 

We have also performed a simple psychophysical ex-
periment using the guage-figure task. We found that sub-
jects can reliably and quite accurately estimate the 3D 
shape of perfectly specular objects. There are three notable 
aspects of the results: 

(i) Subjects can perform the task even when the sur-
face is a perfect mirror, and thus the image 
consists of nothing but a distorted reflection 
of the surrounding world. 

(ii) Subjects could perform the task even though the 
objects were cropped out of their original 
contexts and viewed against a neutral back-
ground, and thus there was no additional 
information about the world surrounding 
the object. 

(iii) Performance was quite reliable across changes in 
the reflected scene. 

Together these findings support the idea that distorted 
reflections across a specular surface provide a stable, power-
ful source of information about 3D shape. 

We have also argued that orientation fields may play a 
more general role in shape estimation. Under some cir-
cumstances, diffuse surfaces produce orientation fields that 
resemble those produced by specular surfaces. Thus the 
visual system may not have to separate specular reflections 
from the underlying surface to use them for shape estima-
tion (although this might be possible anyway). More gener-
ally, we suggest that patterns of image orientation are likely 
to be the crucial “common currency” of shape estimation, 
which are shared by shading, highlights, and texture. 

Finally, we argued that the visual system can use orien-
tation fields to distinguish between textures and reflections. 
Because textures are compressed by slant while reflections 
are compressed by curvature, they generally create very dif-
ferent orientation fields. This difference can be used to 
change a surface from looking matte to glossy. Indeed, 
when textures and reflections are superimposed, the visual 
system may be able to use the distinctive orientation fields 
to separate the two contributions to the image. 

In conclusion, the orientation structure of specular re-
flections appears to be a powerful source of information in 
visual perception. This information is both more stable and 
more readily accessible than previous computational work 
would suggest. 
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Footnotes 
1In fact, under perspective projection, there are two dis-

tinct processes that compress textures in the image. The 
first depends on the absolute depth of the surface (i.e., the 
“zeroth” derivative). The more distant a surface is, the 
smaller it is in the image, and thus the greater the compres-
sion of the texture. The second process is foreshortening, 
which depends on slant (i.e., the first derivative). There are 
three reasons for emphasizing the latter process. First, the 
compression due to distance varies as a function of the in-
verse tangent of the distance. Thus, the effect is only pow-
erful for surfaces whose undulations in depth are large rela-
tive to the viewing distance. Second, the distance effect dis-
appears under orthographic projection and yet we have a 
vivid impression of shape-from-texture under orthographic 
projection. Third, the compression due to depth is an iso-
tropic scaling of the texture pattern. This shows up as a 
weak modulation in the spatial frequency content of the 
image. In contrast, the compression due to slant is by defi-
nition anisotropic: the texture is only compressed along the 
direction of slant. This leads to a powerful cue due to the 
characteristic orientation structure in the image, as dis-
cussed below. Previous work (e.g., Li and Zaidi, 2000, 2003) 
suggests that modulations in image orientation due to sur-
face slant are more important for shape-from-texture than 
modulations in spatial frequency due to surface distance. 

2Note that the second derivative of a surface is different 
from the intrinsic surface curvature. The curvature is equal 
in all directions and at every point on the surface of a 
sphere. What is important for image formation, however, is 
the rate at which the surface normal changes with respect 
to the viewer (i.e., the second derivative of the surface). 
Note also that the directions of maximum and minimum 
surface curvatures are always orthogonal to one another 
when measured with respect to the intrinsic coordinates of 
the surface. However, when projected into the image plane, 
these directions are only orthogonal when the surface is 
fronto-parallel. By contrast, the directions of minimum and 

 



Journal of Vision (2004) 4, 798-820 Fleming, Torralba, & Adelson 817 

maximum second derivative are always orthogonal in the 
image plane. 

3It is well known that images of natural scenes generally 
have a 1/f amplitude spectrum (Field, 1987). In fact the 
noise can be thought of as a natural image whose phase 
spectrum has been randomized. The noise has a flat (i.e., 
uniform) distribution of orientations. 

4Specifically, we define surface anisotropy as  
1 – √(kmin

2 / kmax
2), where kmin is the minimum second de-

rivative and kmax is the maximum second derivative. Surface 
anisotropy is 0 if a local surface patch is equally curved in 
all directions (e.g., planar or center of a sphere); 1 if it is 
locally cylindrical, and intermediate if it is locally “egg-
shaped.” 

5Specifically, saturation = 1 – √ (pmin
2 / pmax

2), where 
pmin is the minimum of the population response, and pmax is 
the maximum of the population response. Note the similar-
ity between this equation and the definition of surface ani-
sotropy.4 

6It should be noted that image orientations cannot dif-
fer by more than 90 deg. This leads to a residual correlation 
between peak orientations (the hue dimension of the orien-
tation maps), such that even for randomly generated distri-
butions r2 = 0.5. To accommodate for this residual correla-
tion, we can normalize the r2 scale so that it runs from 0 to 
1 instead of 0.5 to 1. We then find that on average pairs of 
images that contained the same shape rendered in different 
scenes lead to population peaks that were correlated with a 
modified r2 of 0.84. Conversely, pairs of images that con-
sisted of different shapes rendered under the same scene 
lead to population peaks that were correlated with a modi-
fied r2 of 0.58. 

7The idea that the visual system can achieve perceptual 
constancy by making image measurements that remain sta-
ble across changes in the viewing conditions has a long tra-
dition, and was advocated particularly strongly by Gibson 
(1950a, 1979). When available, this is an elegant strategy 
for visual perception. However, we do not mean to suggest 
that all problems in vision can be solved in this way, nor 
that the visual system never estimates the light field. We are 
simply arguing that under our circumstances, the visual 
system does not need to estimate the illumination to re-
cover certain information about 3D shape from specular 
reflections. 

8The authors wish to credit Barton L. Anderson with 
this observation. 

9To create the textured surfaces, we generated blocks of 
homogeneous texture, and carved the 3D surfaces out of 
these textures. To create the glossy surfaces, we carved a 
sphere out of the each block of texture. We then treated 
the pattern on this sphere as if it were a standard light 
probe illuminating a mirrored object (i.e., the pattern was 
treated as light arriving from an infinite sphere). 
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