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Statistical characterization of real-world illumination 
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Alan S. Willsky  Massachusetts Institute of Technology, Cambridge, MA, USA   

Edward H. Adelson Massachusetts Institute of Technology, Cambridge, MA, USA   

Although studies of vision and graphics often assume simple illumination models, real-world illumination is highly complex, 
with reflected light incident on a surface from almost every direction. One can capture the illumination from every direction 
at one point photographically using a spherical illumination map. This work illustrates, through analysis of photographically 
acquired, high dynamic range illumination maps, that real-world illumination possesses a high degree of statistical 
regularity. The marginal and joint wavelet coefficient distributions and harmonic spectra of illumination maps resemble 
those documented in the natural image statistics literature. However, illumination maps differ from typical photographs in 
that illumination maps are statistically nonstationary and may contain localized light sources that dominate their power 
spectra. Our work provides a foundation for statistical models of real-world illumination, thereby facilitating the 
understanding of human material perception, the design of robust computer vision systems, and the rendering of realistic 
computer graphics imagery.  
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Introduction 
Computer vision, computer graphics, and studies of 

human perception have traditionally relied on idealized 
models of illumination, such as a single point light source, 
a small set of point light sources, or a uniform hemispheri-
cal source. Everyday real-world illumination, on the other 
hand, is highly complex and variable. Surfaces are illumi-
nated not only by luminous sources, such as the sun, sky, 
or indoor lights, but also by light reflected from other sur-
faces in the environment.  

In everyday life, we are usually successful at recognizing 
both objects and materials across a wide range of lighting 
conditions. After all, if we were dependent on a particular 
distribution of illumination to see things correctly, then we 
would be in trouble when the lighting changed.  

Under atypical lighting conditions, however, human 
perception proves much less reliable. This is particularly 
true for the perception of material properties, such as sur-

face reflectance. Figure 1 shows a shiny white plastic scoop 
under two different patterns of illumination. The shape of 
the object is easily recognizable in both photographs, but 
the scoop on the left looks glossy, whereas that on the right 
looks matte. In the image at left, small light sources lead to 
sharp specular highlights, whereas in the image at right, the 
broad diffuse lighting prevents such highlights. Producing 
the photograph at right required a fair amount of effort 
using specialized photographic equipment, because stan-
dard extended sources like fluorescent fixtures and 
bounced flash still have enough structure that they produce 
specular cues that give a sense of gloss.  

Figures 2 and 3 provide additional examples of cases 
where material perception becomes difficult under atypical 
illumination conditions. Figure 2 shows two images of the 
same surface. The image at left was rendered under com-
plex real-world illumination, whereas that at the right was 
rendered under point source illumination. Both images 
include specular highlights, but the image rendered under 

Figure 1. Two p
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hotographs of the same plastic scoop under different illumination conditions.  
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(a) (b)

Figure 3. (a). A photograph of a metal sphere. (b). The negative
of the same photograph. 
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Figure 2. (a). A shiny sphere rendered under photographically
acquired real-world illumination. (b). The same sphere rendered
under illumination by a point light source.  
realistic illumination provides a much stronger sense of the 
glossy reflectance than the image rendered under a point 
source.  

Figure 3 compares a photograph of a metal sphere to a 
egative of the same photograph. The original photograph 
as the characteristic appearance of a metal sphere viewed 

n an everyday scene. The sphere simply produces a dis-
orted and slightly blurred image of the world around it. 
he negative image could, in principle, also be a photo-
raph of the same sphere, if it happened to be placed in a 
orld with the appropriate distribution of light and dark. 
here is no physical reason why this scene could not exist, 
nd a determined photographer could build it on purpose, 
ut it would never occur in ordinary life. This negative im-
ge does not look like a metal sphere; in fact, it hardly 

looks like a realistic photograph of any ordinary sphere.  
These demonstrations show that some illumination 

patterns lead to significant errors in human material per-
ception. In ordinary life, however, we rarely encounter such 
phenomena. Figure 4 shows four spheres, each photo-
graphed in two locations. The images of different spheres 
in the same setting are more similar in a pixelwise sense 
than images of the same sphere in different settings. Yet, 
we easily recognize the various spheres under different eve-
ryday illumination conditions. In an experiment where sub-
jects were asked to match reflectance properties under dif-
ferent illumination conditions, they consistently performed 
better when given two complex real-world illuminations 
than when given one real-world illumination and one sim-
ple synthetic illumination (Fleming, Dror, & Adelson, 
Figure 4. The two images in each column are photographs of the same sphere. The four images in each row were photographed in the
ame location, under the same illumination.  
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2003). This observation suggests that despite their complex-
ity, real-world illumination patterns must possess stable 
properties that the visual system can exploit.  

What, then, characterizes the patterns of illumination 
that occur in everyday life? These patterns of illumination 
are quite varied, occurring indoors and outdoors, in natural 
environments, such as a forest or a meadow, and in man-
made environments, such as a kitchen or an outdoor plaza. 
Yet they all tend to share certain statistical properties, some 
of which are apparently used by the human visual system in 
estimating the reflective properties of materials. To under-
stand material perception, we must understand what real-
world illumination “looks like” (i.e., what statistical features 
are common for the environments we encounter in ordi-
nary life).  

Our purpose in this work is to establish the basic statis-
tical properties of real-world illumination. We use the word 
“real-world” rather than “natural” to emphasize the fact 
that we include man-made environments. We examine the 
regularity and variability of real-world illumination patterns 
using distributions of illumination intensities (Section 3.1), 
spherical harmonic power spectra (Section 3.2), and distri-
butions of bandpass filter pyramid coefficients (Section 
3.3). We find widespread similarity between the statistics of 
real-world illumination and those previously described for 
photographs, with a few significant differences. Many of the 
statistical regularities of real-world illumination, like those 
of photographs and textures, can be described through 
marginal and joint distributions of bandpass filter coeffi-
cients. Some of these regularities correspond to intuitive 
notions, such as the presence of edges or bright light 
sources. Preliminary results of this study were presented in 
a conference paper (Dror, Leung, Willsky, & Adelson, 
2001). 

An understanding of real-world illumination statistics 
is important not only to elucidating the mechanisms of 
human perception, but also to designing computer vision 
systems that operate robustly in the real world. Current 
computer vision systems, for example, are limited in their 
ability to recognize materials. Recognition of surface reflec-
tance depends heavily on illumination. Borrowing a term 
from estimation theory, one might view reflectance recogni-
tion as a “system identification” problem, where the input 
is illumination from all directions, the output is an ob-
served image, and surface reflectance is an unknown prop-
erty to be identified. To solve this problem robustly, given 
only the system output (the image), one must rely on pre-
dictable statistical properties of the input (the illumina-
tion). By taking advantage of the regularity of real-world 
illumination statistics, we have developed a system for clas-
sifying reflectance robustly under unknown everyday illu-
mination conditions (Dror, Adelson, & Willsky, 2001; 
Dror, 2002).  

The statistical characterization of real-world illumina-
tion finds further applications in computer graphics. The 
use of “natural lighting” patterns to render synthetic images 
is becoming increasingly common, because these renderings 

appear more realistic than traditional renderings under 
synthetic illumination (Debevec, 1998; Hwang, 2004). Sta-
tistical properties of real-world illumination could be used 
to design compact representations of natural lighting pat-
terns and efficient methods to render scenes under such 
lighting (Ng, Ramamoorthi, & Hanrahan, 2003). One 
might also use these properties to synthesize artificial illu-
minations that lead to realistic rendered images.  

2. Methods  

2.1 Measuring illumination as an image  
One can measure the illumination incident from every 

direction at a particular point in the real world using a 
camera whose optical center is located at the point of inter-
est. By combining photographs taken in different direc-
tions, one can compose a spherical map describing illumi-
nation at that point (Figure 5). Such spherical images are 
used as environment maps in computer graphics (Debevec, 
1998). If all sources of direct and indirect illumination are 
relatively distant, the illumination map changes slowly as 
the hypothetical camera moves through space.  

An illumination map is a type of image. However, ac-
curate real-world illumination maps differ from typical pho-
tographs in several regards. First, illumination maps cover a 
much wider view angle, spanning the entire sphere instead 
of a narrow view angle near the horizontal. Second, accu-
rate illumination maps must possess a much higher dy-
namic range than typical photographs to capture accurately 
the luminance of both the brightest and darkest areas. This 
is particularly true for illumination maps that contain local-
ized primary light sources, such as incandescent lights or 
the sun.  

Figure 5. A
on the ins

 

 

 photographically acquired illumination map, illustrated 
ide of a spherical shell.  
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A number of researchers have devoted a great deal of 
effort to capturing statistics of typical photographs or 
“natural image” statistics (Field, 1987; Tolhurst, Tadmor, 
& Chao, 1992; Ruderman, 1994; Huang & Mumford, 
1999; Simoncelli, 1999; Buccigrossi & Simoncelli, 1999; 
Olshausen & Field, 2000). They have found that normal 
photographs of indoor and outdoor scenes display a great 
deal of regularity, particularly in power spectra and distri-
butions of bandpass filter pyramid coefficients. These statis-
tics have led to effective image denoising and compression 
schemes (Simoncelli & Adelson, 1996; Portilla, Strela, 
Wainwright, & Simoncelli, 2001; Buccigrossi & Simon-
celli, 1999) as well as computational methods to recognize 
and synthesize texture (Heeger & Bergen, 1995; Portilla & 
Simoncelli, 2000), detect hidden messages in images (Farid, 
2002), detect edges (Konishi, Yuille, Coughlan, & Zhu, 
2003), and recognize transparency (Levin, Zomet, & Weiss, 
2002). Natural image statistics have also helped explain the 
architecture of biological vision systems (Field, 1987; 
Laughlin, 1981; Simoncelli & Olshausen, 2001; Olshausen 
& Field, 2000). This work describes both similarities and 
differences between traditional natural image statistics and 
the statistics of illumination maps.  

Figure 6. To prod
spherical map, on
sphere horizontally
the cylinder to obta

Whereas image statistics have previously been analyzed 
on a planar domain, illumination maps are naturally de-
fined on a sphere. We found that storing illumination 
maps in equal-area cylindrical projection (Canters & De-
cleir, 1989) facilitated certain computations described in 

Sections 3.1, 3.2, and 3.3. To construct this projection, one 
places the sphere at the center of a vertically oriented cylin-
der and projects each point on the spherical surface hori-
zontally outward to the surface of the cylinder (Figure 6). 
One then unwraps the cylinder to obtain a rectangular map 
of finite extent. Regions of equal area on the sphere map to 
regions of equal area on the cylinder. Figure 7 displays il-
lumination maps in equal-area projection with k = 2/π, 
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Teller Images Debevec Images

(a) (b)

(c) (d)  
gure 7. Examples of the illumination maps we used, shown as panoramas in equal-area cylindrical projection. (a) and (c) are drawn
m Teller’s data set, whereas (b) and (d) are drawn from Debevec’s. Dynamic range has been compressed for display purposes. The
mination map in (d) is identical to that in Figure 5.  
θ

 

uce the equal-area cylindrical projection of a
e projects each point on the surface of the
 outward onto the cylinder, and then unwraps
in a rectangular “panoramic” map.  
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where k is the ratio of the radius of the cylinder to the ra-
dius of the sphere. In particular, an infinitesimal patch on 
the sphere at latitude θ will find itself expanded by a factor 
of k/cosθ in the horizontal direction and reduced by a fac-
tor of cosθ in the vertical direction. Because the product of 
these two factors is a constant k, this projection preserves 
areas, even though it heavily distorts angles near the poles.  

2.2 Data sets  
We worked with two different sets of illumination 

maps, each consisting of high dynamic range images that 
represent the radiance incident at a point in the real world. 
The first set consisted of 95 illumination maps based on 
imagery acquired by Teller et al. (2001) in the environs of 
the MIT campus (http://city.lcs.mit.edu/data). The second 
set consisted of nine maps from Debevec’s Light Probe Im-
age Gallery (http://www.debevec.org/Probes/) (Debevec et 
al., 2000). Debevec’s maps represent diverse lighting condi-
tions from four indoor settings and five outdoor settings. 
Two examples from each data set are shown in Figure 7.  

The images in both sets were acquired by combining 
photographs at multiple exposures to obtain pixel values 
that are linear in luminance, using the technique of De-
bevec and Malik (1997). We converted them all to gray-
scale images with pixel values proportional to luminance. 
Debevec’s illumination maps, which were computed from 
photographs of a chrome ball, cover the entire sphere. 
Teller’s illumination maps were each mosaiced from multi-
ple calibrated narrow-angle images. These mosaics cover the 
entire upper hemisphere as well as a band below the equa-
tor.  

We compare our results to those of previously pub-
lished studies of the statistics of traditional restricted-angle 
photographs. Huang and Mumford (1999) performed a 
number of statistical analyses on a particularly large set of 
images, consisting of 4000 photographs collected and cali-
brated by van Hateren and van der Schaaf (1998). These 
images were collected outdoors, but include photographs of 
buildings and roads as well as more “natural” scenes. Other 
image sets, such as that of Tolhurst et al. (1992), include 
indoor images. 

3. Results  

3.1 Illumination intensity distribution  
3.1.1 Marginal distribution of intensity  

Although light is typically incident on a real-world sur-
face from every direction, the strongest illumination usually 
comes from primary light sources in a few directions. To 
quantify this intuition, we examined the marginal distribu-
tion of illumination intensity for our sets of illumination 
maps. This distribution is effectively just a histogram of 
pixel values. To compute it accurately, we must take into 
account the solid angle corresponding to each pixel of the 

illumination map. For an equal-area projection, this solid 
angle is constant, so we can compute the marginal distribu-
tion of illumination intensities with an unweighted pixel 
histogram.  

Figure 8 shows total illumination intensity distribu-
tions for the 95 Teller images and for the 9 Debevec im-
ages. Panels (a) and (b) show the distribution of linear lu-
minance values, whereas panels (c) and (d) show the distri-
bution of log luminance values. The linear luminance dis-
tribution plots reveal the general trend we expect — a ma-
jority of pixels at low intensity, with a heavy positive tail 
corresponding to pixels of much higher intensities. A typi-
cal digital photograph stored in 8-bit format necessarily 
lacks this heavy positive tail due to limited dynamic range.  
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igure 8. Illumination intensity distributions. (a) and (b) show
ean histograms of linear luminance values for the 95 Teller
ages and the 9 Debevec images, respectively. (c) and (d)

how median histograms of natural log luminance values for the
wo image sets. The vertical bars extend from the 20th percentile
o the 80th percentile of the distribution values over the image
et. For all analysis in Section 3.1, the pixel values in each im-
ge were scaled linearly before analysis such that their mean log
alue was 0 (i.e., such that their geometric mean was 1).  
The log luminance histograms of Figure 8(c) and 8(d) 
how that a majority of pixels fall near the mean log lumi-
ance, with a smaller proportion of particularly dark or 
right pixels. Huang and Mumford (1999) attributed the 
symmetry in the distribution of log luminance values for 
he 12-bit images they analyzed to the presence of sky in 
any of their images. Our distributions exhibit more strik-

ng asymmetries, partly because both the Teller and De-
evec data sets contain not only sky but also more localized 

http://city.lcs.mit.edu/data
http://www.debevec.org/Probes/
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light sources. The distribution for the Teller set is particu-
larly asymmetric due to the presence of the sun in many 
images and to underexposure in the imaging system at very 
low intensities.  

The distribution of log luminance values for the Teller 
image set has SD σ = 1.04, kurtosis1 k = 4.04, and differen-
tial entropy2  H = 2.06 bits. The Debevec image set has 
σ = 1.32, k = 12.49, and H = 2.21 bits. Huang and Mum-
ford found σ = 0.79, k = 4.56, and H = 1.66 bits. The kur-
tosis values are influenced heavily by individual outliers. 
The SDs and entropies of the distributions are higher for 
our data sets than for those of traditional photographs, due 
to the higher dynamic range and the presence of concen-
trated illumination sources.  

Despite the aforementioned overall trends, intensity 
distributions vary a great deal from one illumination to the 
next. The degree of variation in the distribution between 
images is summarized by the vertical lines in Figure 8(c) and 
8(d), which extend from the 20th percentile to the 80th 
percentile of the distribution values over all the images. 
Table 1 provides summary statistics on the SD, kurtosis, 
and differential entropy of log luminance values for indi-
vidual images in each data set. Kurtosis varies more from 
one image to another than SD and differential entropy. 

3.1.2 Nonstationarity  
Most researchers in image processing treat images as 

samples of a stationary statistical process. That is, they as-
sume that all parts of the image possess identical statistical 
properties; therefore, they treat each part of the image in 
the same way. Illumination maps clearly violate this sta-
tionarity assumption, if only because primary light sources, 
such as the sun, sky, and indoor lights, are more likely to 
appear in the upper hemisphere. Illumination maps with 
randomized orientation would, of course, be stationary, but 
in practice their orientation is not arbitrary; human and 
machine vision systems typically know which way is up.  

Figure 9(a) and 9(b) show mean luminance as a func-
tion of elevation for the two data sets. As expected, illumi-
nation generally increases with elevation. Interestingly, the 
mean intensity reaches a local minimum at the horizontal 

view direction. Both data sets contain illumination maps in 
which the ground reflects a significant amount of light 
from above, whereas visible surfaces in the horizontal direc-
tion are shadowed [e.g., Figure 7(b)]. Torralba (A. Torralba, 
personal communication, August, 2001; 2001) observed 
that images of large-scale scenes viewed from a horizontal 
direction also have nonstationary means. He aligned large 
sets of images with respect to a feature of interest, such as a 
person, and averaged the images within each set pixelwise 
to obtain “average images,” such as that shown in Figure 
10. In most outdoor urban and natural settings, the average 
images exhibit a dip in intensity near the horizon (A. Tor-
ralba, 2001), similar to the dip we observed for illumina-
tion maps in Figure 9(a) and 9(b).  
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Figure 9. Dependence of illumination on elevation. (a) and (b)
show mean log luminance as a function of elevation. (c) and (d)
each show two histograms of illumination intensities, one for
directions within 30º

 
of the upward vertical and the other for di-
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to 15º

 
below the equator. Images were normal-

ized as in Figure 8.  

 

Teller Images Debevec Images 
 σ k H   σ k H 
Mean  1.02  5.15  1.64   Mean  1.27 8.83 1.90 
SD  0.21  4.20  0.33   SD  0.39 6.82 0.39 
Min  0.57  1.69  0.80   Min  0.73 2.26 1.30 
Max  1.81  19.88  2.43   Max  1.82 21.46 2.44 

Table 1. Statistics on the distribution of log luminance values in 
individual images in each data set. The columns correspond to 
SD (σ), kurtosis (k), and differential entropy (H) of pixel values 
for an individual image. The rows correspond to the mean, SD, 
minimum, and maximum of that image statistic across all images 
in the data set.  

Figure 9(c) and 9(d) each show two illumination inten-
sity histograms at different ranges of elevations. The  
marginal distributions for higher view directions have a 
larger mean as well as heavier positive tails, reflecting the 
larger probability of bright localized sources at higher eleva-
tions.  

3.1.3 Joint distribution of illumination from adjacent 
directions  

To describe the spatial structure of real-world illumina-
tion maps, we must use statistics that depend on joint dis-
tributions of multiple pixels. The simplest way to do this is 
to examine the empirical joint histograms of pairs of pixels 
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with some specific spatial relationship. Figure 11 shows 
contour plots of the joint histograms of horizontally adja-
cent pixels from all of the Teller illumination maps and 
from all of the Debevec maps. We define the horizontal 
direction in the global coordinate frame such that “hori-
zontally adjacent” pixels lie along the same line of latitude. 
We divide each line of latitude into 512 “adjacent” pixels. 

Requiring that each pixel pair be separated by a fixed dis-
tance on the sphere results in virtually identical histograms.  

Figure 10. This image, described by Torralba, represents the
pixelwise mean of over 300 images of outdoor scenes containing
a person whose head spans approximately two pixels. The im-
ages are aligned with respect to the person’s head before aver-
aging, so that a humanlike shape is visible in the center. The
remainder of the average image is of nonuniform intensity, with
increased intensity near the top of the image and a noticeable dip
in intensity near the horizon. Reprinted from A. Torralba and P.
Sinha (2001) with author’s permission.  

 

Figure 11 shows that log luminance values at horizon-
tally adjacent pixels p1 and p2 are highly correlated. Much 
of the mass of the joint histogram concentrates near the 
diagonal where p1 = p2. In agreement with Huang and 
Mumford (1999), we found that p1 + p2 and p1 – p2 are 
more nearly independent than p1 and p2. In particular, the 
mutual information3

 
of p1 and p2 is 2.41 bits for the Teller 

images and 3.25 bits for the Debevec images, whereas that 
of p1 + p2 and p1 – p2 is only 0.10 bits for the Teller images 
and 0.07 bits for the Debevec images. Hence, the percent-
age difference between the luminance incident from two 
horizontally adjacent spatial directions is roughly inde-
pendent of the mean luminance from those two directions. 

The variability of marginal pixel histograms from image 
to image leads to variability in the joint pixel histogram 
from image to image.  The ensemble pixel histograms of 
Figure 11 also vary between the two data sets.  In both pan-
els of Figure 11, the increased extent of the joint distribu-
tions in the upper right quadrant compared to the lower 
left reflects the asymmetry of the marginal distribution il-
lustrated in Figure 8. 

The utility of joint pixel histograms for examining spa-
tial illumination structure is limited by the difficulty of 
visualizing joint histograms of three or more pixels.  In ad-
dition, the histograms vary from one illumination map to 
another.  We wish to identify the statistical regularities in 
illumination.  We therefore turn to two image-processing 
techniques that have formed the basis for statistical charac-
terization of spatial properties of natural images frequency 
domain analysis and bandpass filter pyramid analysis. 

3.2 Spherical harmonic power spectra 
Much early work on natural image statistics focused on 

the regularity of their power spectra.  A number of authors 
(Field, 1987; Tolhurst et al., 1992; Ruderman, 1994) have 
observed that two-dimensional power spectra of natural 
images typically fall off as 1/f 2+η, where f represents the 
modulus of the frequency and η is a small constant that 
varies from scene to scene.  A power spectrum of this form 
is characteristic of self-similar image structure.  If one 
zooms in on one part of the image, the power spectrum will 
typically change only by an overall scaling factor.  

The natural spherical equivalent of the planar Fourier 
transform is a spherical harmonic decomposition. The 
spherical harmonics form an orthonormal basis for square 
integrable functions on the sphere. Associated with each 
basis function is an order L, a non-negative integer analo-
gous to frequency. The 2L + 1 spherical harmonics of order 
L span a space that is closed under rotation (Inui, Tanabe, 
& Onodera, 1996).  

Just as planar white noise has a flat two-dimensional 
power spectrum, white noise on the sphere has equal power 
in every spherical harmonic. Similarly, if the self-similarity 
properties observed in the natural image statistics literature 
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Figure 11. Joint histograms of log luminance at horizontally adja-
cent pixels p1 and p2 in the Teller images (left) and Debevec
images (right). Images were normalized as in Figure 8. 
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carry over to spherical illumination maps, the average 
power of the spherical harmonics at order L will fall off as 
1/L2+η 

.  
We computed spherical harmonic coefficients for the 

illumination maps in both data sets using the formulas 
given by Inui et al. (1996). We obtained average power at 
each order L as the mean of squares of the coefficients at 
that order. Teller’s data lack information about the lowest 
portion of the illumination hemisphere. We applied a 
smooth spatial window to these illumination maps before 
transforming them to the spherical harmonic domain.  

Figure 12 shows the relationship between average 
power and harmonic order for the four illumination maps 
of Figure 7, when pixel value is proportional to log lumi-
nance. All four images have power spectra that lie close to a 
straight line of slope –2 on log-log axes, corresponding to a 
power spectrum of the form k/L2 

. We fit a straight line on 
log-log axes to the power spectrum of each image in the 
Teller data set. The best-fit lines had slopes ranging from 
–1.88 to –2.62, with a mean of –2.29. All 95 regressions 
gave R-square values of at least 0.95, with 86 of them above 
0.97 and a mean R-square value of 0.98, indicating excel-
lent fits. When we fixed the slope to –2 in all regressions, 
we also found good fits, with a minimum R-square value of 
0.93 and a mean of 0.96. Fixing the slope to –2.29 gave a 
minimum R-square value of 0.91 and a mean of 0.98.  

We obtain qualitatively different results for the same il-
luminations when we compute power spectra for illumina-
tion maps whose pixel values are linear in luminance. Illu-
mination maps that lack concentrated primary light 
sources, such as those of Figure 7(a) and 7(b), have spheri-
cal harmonic spectra that are well approximated by k/L2+η 
with η small. On the other hand, illumination maps that 
contain intense, localized light sources have smooth power 
spectra that remain flat at low frequencies before falling off 
at higher frequencies. The illuminations of Figure 7(c) and 
7(d) both display this behavior; the power spectrum of a 
linear luminance version of Figure 7(c) is shown in Figure 
13. In these images, one or a few luminous sources, such as 
the sun or incandescent lights, dominate the power spec-
trum. Because these light sources approximate point 
sources, their spectra are flat at low frequencies. If one clips 
the brightest pixel values in these images, the power spectra 
return to the familiar k/L2+η form (Figure 13).  

Figure 14 shows the mean spherical harmonic power 
spectrum of all the illuminations in the Teller data set, with 
vertical bars indicating the variability from one image to 
another. Panels (a) and (b) represent the spectra of linear 
luminance images, whereas (c) represents the spectra of log 
luminance images, and (d) represents the spectra of images 
where the brightest pixel values have been clipped. In panel 
(a), the images were normalized to have identical mean lu-
minance values before computation of the power spectra. 
The power spectra exhibit a great deal of variability, but 
this results predominantly from differences in the total 
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roportional to log luminance. Each data point represents the
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igure 13. Left. The spherical harmonic power spectrum of the
lumination map in Figure 7(c), with pixel values linear in lumi-
ance. Right. The corresponding spectrum after the pixel values
orresponding to the sun have been clipped to a luminance
alue only slightly greater than that of the sky. Clipping these
xtremely bright pixels reduces power at all frequencies and
roduces a more linear power spectrum. The dotted lines of
lope –2 correspond to power spectra of the form k/L2 

.  
ariance (power) of the different images. If the images are 
ormalized for total variance instead, the variability of the 
ower spectra decreases. The error bars are still quite large 
t low frequencies, however, because images dominated by 
ne or a few point sources have flat power spectra at low 
requencies. Clipping the brightest luminances or log trans-
orming the image leads to more regularly shaped power 
pectra, as indicated by the smaller error bars of (c) and (d).  
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Previous work on natural images has reported 1/f 2+η 

power spectra whether pixel values are linear or logarithmic 
in luminance (Ruderman, 1994). These results on linear 
luminance images differ from ours because most previous 
researchers have avoided photographs of point-like lumi-
nous sources and have used cameras of limited dynamic 
range, such that a few maximum intensity pixels could not 
dominate the image power spectra. A natural illumination 
map, on the other hand, may be dominated by light sources 
occupying a small spatial area. Once the relative strength of 
such sources is reduced through clipping or a logarithmic 
transformation, illumination maps have power spectra simi-
lar to those of typical photographs.  

3.3 Bandpass filter pyramid statistics  
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(a) linear luminance, 
     normalized by mean

(b) linear luminance, 
     normalized by variance

(a) clipped luminance, 
     normalized by variance

(b) log luminance, 
     normalized by variance

L

Figure 14. Mean power spectra of the 95 Teller images. Heavy
solid lines indicate the mean of the individual power spectra at
each spherical harmonic order, whereas each vertical bar ex-
tends both above and below this line by one SD. The power
spectra of (a) and (b) were computed on images whose pixel
values were linear in luminance. In (a), images were scaled to
have the same mean, whereas in (b), images were scaled to
have the same pixelwise variance (i.e., the same total non-DC
power). In (c), power spectra were computed for “clipped” im-
ages, which were linear in luminance up to a ceiling value slightly
greater than the typical luminance of the sky. The power spectra
of (d) were computed for log luminance images. The images of
(c) and (d) were scaled to have the same variance. The dotted
lines are best-fit lines corresponding to power spectra of the form
k/L2+η

 
, where η is –0.18 in (a) and (b), 0.34 in (c), and 0.29 in

(d). Each point on the heavy solid curve represents the average
power of an interval containing one or more discrete frequencies.
Note that the vertical lines are not traditional error bars, because
they represent SD rather than SEM. These SDs were computed
on log power values.  

The fact that a single bright source can dominate the 
power spectrum of an illumination map represents a short-
coming of frequency domain analysis. Multiscale bandpass 
filter pyramids, such as wavelets, allow a more localized 
analysis; a single point-like source will affect only a few 
wavelet coefficients. Indeed, such analysis forms the basis 
for most recent work in the natural image statistics litera-
ture (Ruderman, 1994; Simoncelli & Olshausen, 2001; 
Wainwright, Simoncelli, & Willsky, 2001). The distribu-
tions of pyramid coefficients at various scales and orienta-
tions capture not only power spectral properties, but also 
the non-Gaussian nature of real-world images. These distri-
butions tend to be highly kurtotic, with many small coeffi-
cients and a few larger ones, indicating that bandpass filter 
pyramids provide a sparse representation of natural images. 
The scale-invariant properties of natural images translate 
into predictable relationships between pyramid coefficient 
distributions at different scales. The regular nature of these 
distributions facilitates image denoising (Portilla et al., 
2001; Simoncelli & Adelson, 1996), image compression 
(Buccigrossi & Simoncelli, 1999), and texture characteriza-
tion (Heeger & Bergen, 1995; Portilla & Simoncelli, 2000), 
and has also proven useful in understanding neural repre-
sentations in biological visual systems (Simoncelli & Ol-
shausen, 2001; Schwartz & Simoncelli, 2001).  

Previous analysis of natural images and textures has as-
sumed that the data are defined on a planar domain. Be-
cause illumination maps are defined as functions of orien-
tation, they are most naturally analyzed in a spherical do-
main. To this end, we utilized the spherical wavelet frame-
work introduced by Schröder and Sweldens (1995). These 
transforms operate on data defined on a subdivided icosa-
hedron whose vertices are quasi-regular on the surface of 
the sphere. Such transforms are known as second-
generation wavelet transforms because the basis functions 
are not exact translates and dilates of a single function 
(Schröder & Sweldens, 1995). We used a transform de-
scribed by Amaratunga and Castrillon-Candas (2001), 
based on second-generation wavelets with vanishing zero-
order moments and approximately vanishing first-order 
moments. These wavelets are constructed from simple hat 
functions using a linear lifting scheme.  

Figure 15 shows marginal distributions of spherical 
wavelet coefficients at three successive scales for the 95 
Teller images. The distributions are highly kurtotic, with 
the great majority of coefficients near zero and a few much 
larger coefficients. Figure 16 summarizes the variation from 
image to image for the distribution at one scale, for both 
linear luminance and log luminance images. The distribu-
tions are remarkably similar from one image to another, 
although the distributions associated with the linear lumi-
nance images exhibit variations in the overall scale of the 
wavelet coefficient distribution. The sun and other bright 
localized sources that dominate the entire power spectra of 
some of the illumination maps (Section 3.2) have a less no-
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Figure 16. Variation in marginal distributions of wavelet coeffi-
cients from one image to another, for the second-finest scale
band of Figure 15. The heavy dashed lines indicate the median
of the histogram values across the 95 images. The vertical bars
extend from the 20th percentile to the 80th percentile of the dis-
tribution values across images. We divided each linear lumi-
nance image by its mean before computing wavelet coefficients
but did not normalize either linear or log luminance images for
variance.  

ticeable effect on the distributions of wavelet coefficients 
because they influence only a handful of wavelet coeffi-
cients. The variance of wavelet coefficients at a particular 
scale provides a measure of spectral power in some fre-
quency band. A single localized light source can greatly in-
fluence this variance by contributing a few large outlying 
wavelet coefficients. However, it will have a relatively small 
effect on the shape of the histogram.  

Several authors have observed that generalized Lapla-
cian distributions of the form P(x) ∝ exp(–|x/s|α) accu-
rately model the wavelet coefficient distributions of typical 
photographs and of ensembles of photographs (Buccigrossi 
& Simoncelli, 1999; Huang & Mumford, 1999). Panels (a) 
and (b) of Figure 15 show maximum likelihood fits of this 
form to the ensemble histogram of wavelet coefficients 
from the Teller images. The fits are reasonably accurate, 
although they tend to underestimate the actual distribution 
for high wavelet coefficient magnitudes. We observed simi-
lar behavior for fits to empirical wavelet coefficient distri-

butions for individual illumination maps. This discrepancy 
from results reported in the natural image statistics litera-
ture may be due to the higher dynamic range of the illumi-
nation maps we analyzed.  
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Figure 15. Distributions of spherical wavelet coefficients at suc-
cessive scales (thick lines), along with generalized Laplacian fits
[thin lines in (a) and (b)], for the 95 Teller images. In (a) and (b),
as elsewhere in this work, the spherical wavelet basis functions
are normalized to have identical power at every scale. In (c) and
(d), their amplitudes are divided by 4 at the finest scale and by 2
at the next finest scale. (a) and (c) were computed on images
whose pixel values were linear in luminance, whereas (b) and (d)
were computed on log luminance images. The α parameters of
the generalized Laplacian fits ranged from 0.50 to 0.52 for the
linear luminance images, and from 0.41 to 0.59 for the log lumi-
nance images. We windowed the illumination maps as described
in Section 3.2 before computing the wavelet transform, and dis-
carded wavelet coefficients corresponding to the absent portions
of the illumination map. We divided each linear luminance image
by its mean before computing wavelet coefficients.  

The wavelet coefficient distributions of Figure 15 also 
exhibit evidence of scale invariance in illumination maps. 
Distributions of coefficients at different scales are similar 
apart from an overall normalization constant. Scale invari-
ance requires that all statistics computed on an ensemble of 
images I(x) be identical to those computed on normalized, 
rescaled versions of the images βνI(β x), where the expo-
nent ν is independent of the scale β (Ruderman, 1994). An 
exponent ν = 0 leads to two-dimensional power spectra of 
the form 1/f 2, where f is the modulus of frequency. More 
generally, a nonzero exponent ν leads to power spectra of 
the form 1/f 2–ν 

. For a scale-invariant image ensemble, the 
variance of wavelet coefficient distributions will follow a 
geometric sequence at successively coarser scales. If the 
wavelet basis is normalized such that wavelets at different 
scales have constant power, as measured by the L2 

norm, 
then the variance will increase by a factor of 22+ν 

at succes-
sively coarser scales. If we increase the amplitude of the 
basis functions by a factor of 2 at each coarser scale, then 
the variance of the coefficients will increase by a factor of 
only 2ν 

at successively coarser scales. Panels (c) and (d) of 
Figure 15 illustrate the results of such rescaling. Because ν 
is small, the distributions change little from one scale to the 
next. Note that linear-luminance illumination maps are not 
strictly scale invariant, as evidenced by the fact that their 
power spectra often deviate significantly from the 1/f 2-ν 

form. The distributions of wavelet coefficients at successive 
scales suggest, however, that illumination maps do possess 
scale-invariant properties apart from the contributions of 
bright localized light sources.  

 



Journal of Vision (2004) 4, 821-837 Dror, Willsky, & Adelson 831 

Authors in the natural image statistics literature have 
noted that even though bandpass filter pyramid coefficients 
are approximately decorrelated, coefficients that are near 
one another in position, scale, or orientation exhibit code-
pendencies that are remarkably reproducible for different 
images (Simoncelli, 1999; Buccigrossi & Simoncelli, 1999; 
Huang & Mumford, 1999). These codependencies are due 
largely to edgelike structures in images, so oriented filter 
pyramids are important in analyzing them. The spherical 
wavelet basis used to generate Figures 15 and 16, on the 
other hand, consists of wavelet functions with approximate 
radial symmetry. Because oriented pyramid transforms for 
spherical data domains are not readily available, we applied 
planar pyramid analysis to equal-area cylindrical projections 
of the Teller and Debevec illumination maps. This projec-
tion introduces spatially varying distortion that may affect 
the image statistics, but it allows direct comparison of our 
results to the existing literature on natural image statistics 

and texture analysis. Horizontal lines in the projected im-
ages correspond to lines of latitude on the sphere, whereas 
vertical lines correspond to lines of longitude. We used an 
8-tap quadrature mirror filter (QMF) pyramid described by 
Johnston (1980) and implemented by Simoncelli and Adel-
son (1990), and we used k = 2/π 

 
in the equal-area projec-

tion. We confirmed that the coefficient distributions for 
both vertically and horizontally oriented filters at successive 
scales are similar to those observed for spherical wavelets in 
Figure 15.  

Figure 17 shows the conditional distributions of the 
horizontal QMF coefficients of the Teller illumination 
maps given the values of several nearby coefficients. These 
distributions are shown as images, with each column repre-
senting the distribution of the horizontal coefficient given a 
particular value of a related coefficient. Brighter pixels rep-
resent higher probabilities, with the probabilities in each 
column summing to one.  

Figure 17. Conditional h
cates a probability; the p
decomposition. The hor
vertical coefficient at the
adjacent horizontal coef
minance images.  
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istograms for a horizontal filter coefficient given the values of its neighbors. The brightness of each pixel indi-
robabilities in each column sum to unity. The vertical axis is a fine-scale horizontal coefficient of an 8-tap QMF

izontal axis represents (a) the horizontal coefficient at the same position but at the next coarser scale, (b) the
 same scale and position, (c) a vertically adjacent horizontal coefficient at the same scale, and (d) a horizontally
ficient at the same scale. The conditional histograms represent average distributions over the 95 Teller log lu-
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All four of the joint distributions exhibit a “bow tie” 
shape characteristic of natural images (Simoncelli, 1999; 
Buccigrossi & Simoncelli, 1999). The variance of a filter 
coefficient increases with the magnitude of neighboring 
coefficients at the same scale and orientation, and also with 
the magnitude of coefficients of other scales and orienta-
tions at the same spatial location. Intuitively, edges and 
bright sources tend to produce large coefficients at multiple 
scales and orientations and at nearby positions. Figure 
17(d) shows that two horizontally adjacent, horizontally 
oriented coefficients at the same scale also exhibit signifi-
cant correlation. This correlation reflects the tendency of 
edges in an image or illumination map to continue in the 
same direction; horizontally oriented filters respond 
strongly to horizontal edges.  

4. Discussion  

4.1 Applications of illumination statistics  
The properties of real-world illumination are important 

in vision and graphics because illumination, together with 
the reflectance properties and geometry of a surface, deter-
mines the appearance of a surface in an image. In graphics, 
one must specify an illumination to render an image. In 
vision, one must make assumptions about illumination to 
recognize reflectance or geometry. The statistical regulari-
ties discussed in this work may, therefore, find application 
in several areas.  

Understanding human vision 
We have found that humans are able to match surface 

reflectance properties from isolated images of surfaces un-
der different unknown real-world illuminations (Fleming, 
Dror, et al., 2003). In the absence of assumptions about 
illumination, this problem is underconstrained; different 
combinations of illumination and reflectance could pro-
duce exactly the same image, even if one assumes that sur-
face geometry is known. Indeed, humans perform much 
worse in reflectance matching tasks given images rendered 
under simple synthetic illumination maps. Our experimen-
tal evidence suggests that humans may depend on the sta-
tistical properties discussed here to judge surface reflectance 
properties (Fleming, Dror,  et al., 2003). Hartung and Ker-
sten (2003) and Fleming, Torralba, Dror, and Adelson 
(2003) have found evidence that humans take advantage of 
similar properties of illumination to recognize shape under 
unknown illumination. Statistical characterization of illu-
mination is an essential component of a Bayesian approach 
to object and material perception (Kersten, Mamassian, & 
Yuille, 2004).  

 Computer vision  
We have been able to take advantage of the statistical 

regularity of real-world illumination to design a computer 

vision system that classifies surface reflectance from images 
of a surface under unknown illumination (Dror Adelson, 
& Willsky, 2001; Dror, 2002). The regularity of illumina-
tion patterns translates into predictable relationships be-
tween certain features of an image of a surface and the re-
flectance of that surface. In particular, we found that statis-
tics summarizing the distributions of pixel intensities and 
bandpass filter coefficients of the observed image facilitated 
classification of surface reflectance. More generally, an un-
derstanding of illumination statistics may allow recognition 
of materials and material properties by a computer vision 
system.  

Shape-from-shading algorithms depend on the relation-
ship between surface orientation and reflected surface radi-
ance, which in turn depends on illumination. Statistical 
priors on illumination may allow computer vision systems 
to recognize surface geometry under unknown illumina-
tion, even for specular surfaces. Such statistical priors may 
also facilitate accurate motion estimation in the presence of 
specularities.  

Computer graphics  
Researchers in computer graphics have recently de-

voted considerable effort to rendering scenes using real-
world illumination to achieve greater realism (Debevec, 
1998; Debevec et al., 2000; Ramamoorthi & Hanrahan, 
2001). Performing such renderings quickly and with rea-
sonable storage requires compact representations for real-
world illumination and efficient methods for rendering 
under such illumination. One may be able to exploit statis-
tical properties of real-world illumination to achieve these 
goals. For example, Ng et al. (2003) found that a wavelet-
based lighting approximation proves more effective than 
one based on spherical harmonics.  

The illumination statistics discussed here might also be 
used to recover illumination maps from sparse or incom-
plete measurements, or to create synthetic illumination 
maps that lead to realistic rendered images.  

4.2 Comparison of illumination maps and 
typical photographs  

We have found that the statistical properties of real-
world illumination maps are similar in many ways to those 
of typical photographs. This might be expected, given that 
illumination maps can also be thought of as photographs of 
the real world. The structures that contribute to the statis-
tics of typical photographs, such as edges, surfaces, and tex-
tured regions, are also present in illumination maps. On 
the other hand, we have observed a number of differences 
between the statistics of illumination maps and those re-
ported in the natural images statistics literature. These stem 
from several differences between illumination maps and 
typical photographs:  
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• Illumination maps have a much greater angular ex-
tent than typical photographs.  

• Photographs are typically taken in a nearly horizon-
tal direction, matching the experience of 
human vision. Illumination maps are omni-
directional, with most power typically inci-
dent from above. Illumination maps often 
include primary light sources, such as the 
sun; photographs tend to avoid these.  

• Illumination maps have an intrinsic sense of orien-
tation, which photographs may or may not 
share.  

• Illumination maps generally have a much higher 
dynamic range than typical photographs.  

• Illumination maps are linear in luminance, 
whereas most photographic devices com-
press the luminance range in a nonlinear 
and often uncharacterized fashion.  

Some of these differences, such as the limited dynamic 
range and nonlinear response of typical photographs, might 
be viewed as limitations of the recording device. If one 
wishes to use image statistics for image processing or com-
puter vision tasks, however, the relevant statistics are those 
of the actual images to be processed, regardless of the fidel-
ity with which they represent the real world. For illumina-
tion maps, on the other hand, accurate representation of 
the dynamic range is critical. Using illumination maps with 
compression or truncation of the dynamic range for render-
ing purposes will lead to a lack of realism in the resulting 
rendered images. In fact, the use of illumination maps or 
“light probes” for rendering purposes has motivated recent 
developments in high dynamic range photography (De-
bevec & Malik, 1997; Debevec, 1998).  

4.3 Illumination maps as textures  
The domains in which we have characterized natural il-

lumination statistics — distributions of intensities, power 
spectra, and distributions of wavelet coefficients — are also 
used to characterize texture (Heeger & Bergen, 1995; 
Portilla, Strela, Wainwright, & Simoncelli, 2001). Indeed, 
we might think of illumination patterns as types of textures. 
We can test the extent to which a set of statistics captures 
the perceptually essential characteristics of real-world illu-
mination by applying texture synthesis algorithms to gener-
ate novel illuminations whose statistics match those of real-
world illuminations. Panel (a) of Figure 18 shows a sphere 
rendered under the photographically acquired illumination 
map of Figure 7(d). Panels (b), (c), and (d) show identical 
spheres rendered under synthetic illumination maps. The 
illumination map of (b) consists of Gaussian noise with a 
1/f 2

 
power spectrum; although the power spectrum resem-

bles that of natural illumination, the resulting sphere does 
not look realistic at all.4

 
The illumination map of (c) was 

synthesized to have a pixel intensity distribution and mar-

ginal wavelet coefficient distributions identical to those of 
(a), using the texture synthesis technique of Heeger and 
Bergen (1995). This sphere looks much more realistic, and 
human observers are able to recognize that its reflectance 
properties are similar to those of the sphere in (a) (Fleming, 
Dror, et al., 2003). Finally, the illumination map of (d) was 
created using the texture synthesis technique of Portilla and 
Simoncelli (2001), which ensures that not only its pixel 
intensity distribution and marginal wavelet coefficient dis-
tributions but also certain properties of its joint wavelet 
coefficient distributions match those of (a). This synthetic 
illumination map captures the presence of edges in the real 
illumination map, leading to a sphere whose apparent re-
flectance properties are even more similar to that of (a). 
This suggests that the statistical properties of natural illu-
mination described in this chapter play an important role 
in reflectance estimation by the human visual system (as 
discussed in Fleming, Dror, et al., 2003). It also suggests 
that one may be able to produce realistic renderings using 
properly synthesized illumination.  

4.4 Future directions  
One could extend our treatment of real-world illumina-

tion by considering how an illumination map tends to 
change as the camera recording it moves through space. 
That is, one might consider the statistics of the plenoptic 
function, which describes all the rays of light passing 
through every point in a three-dimensional volume (Adel-
son & Bergen, 1991). The five-dimensional plenoptic func-
tion can be characterized as the set of two-dimensional 
spherical illumination maps at every point in a three-
dimensional volume. Because image-based rendering in-
volves resampling the plenoptic function (McMillan & 
Bishop, 1995), statistical priors on this function could fa-
cilitate image-based rendering with sparse data.  

We carried out our analysis using only illumination in-
tensity information — that is, we essentially analyzed gray-
scale illumination maps. One could extend this treatment 
by considering color. Rough preliminary analysis suggests 
that the statistical properties discussed in this work are 
similar for different color channels.  

5. Conclusions  
The illumination distributions we encounter in every-

day life are highly variable and complex. At the same time, 
they exhibit a great deal of statistical regularity. In fact, one 
might view illumination patterns as complicated textures 
with clearly recognizable characteristics.  

We examined the statistics of a set of illumination 
maps recorded photographically in everyday indoor and 
outdoor scenes. The pixel intensity distributions of these 
illumination maps peak at low intensities, with fewer pixels 
of much higher intensity. The frequency spectra, computed 
using spherical harmonics, fall off at a predictable rate at 
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(a) Original (b) 1/     power spectrumf 2

(c) Heeger and Bergen texture (b) Portilla and Simoncelli texture
 

Figure 18. Spheres of identical reflectance properties rendered under a photographically acquired illumination map (a) and three syn-
thetic illumination maps (b-d). The illumination in (b) is Gaussian noise with a 1/f 2

 
power spectrum. The illumination in (c) was synthe-

sized with the procedure of Heeger and Bergen (1995) to match the pixel histogram and marginal wavelet histograms of the illumination
in (a). The illumination in (d) was synthesized using the technique of Portilla and Simoncelli (2000), which also enforces conditions on
the joint wavelet histograms. The illumination map of (a) is due to Debevec et al. (2000).  

high frequencies. Bandpass filter pyramid coefficients at 
each scale and orientation have highly kurtotic distribu-
tions of a predictable shape. Coefficients of filters adjacent 
in scale, orientation, and position exhibit strong statistical 
dependencies. Although the coefficients themselves are 
roughly uncorrelated, their magnitudes are heavily corre-
lated. These predictable statistics correspond to intuitive 
notions, such as the presence of sharp edges at different 
scales in real-world illumination patterns.  

Many of the regularities observed through earlier stud-
ies of low dynamic range, restricted field-of-view photo-
graphs carry over to real-world illumination maps. Unlike 
the photographs analyzed in most of the natural image sta-
tistics literature, however, the illumination maps we ana-
lyzed have a very wide field of view and contain primary 
light sources represented with high dynamic range. This 
leads to several significant differences between the statistics 
of illumination maps and those typically reported in the 
natural image statistics literature. The presence of strong 

point-like light sources in some scenes leads to high vari-
ability in the power spectra of illumination maps, particu-
larly at low frequencies. In particular, the power spectra 
may deviate significantly from the 1/f 2+η 

model, violating 
scale invariance. Illumination maps display nonstationary 
statistical properties, such as different distributions of illu-
mination intensity at different elevations. Typical photo-
graphs may also lack stationarity, but their nonstationary 
properties have received little attention in the literature. 
Wavelet coefficient distributions are fairly regular from one 
illumination map to another, but fits to generalized Lapla-
cian distributions are less tight than those previously ob-
served for more typical photographs (Buccigrossi & Simon-
celli, 1999; Huang & Mumford, 1999).  

The characteristics of real-world illumination play an 
essential role in the perception of material properties. A 
description of these statistics also facilitates the rendering 
of realistic computer graphics imagery and the design of 
robust computer vision systems able to recognize materials.  
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Footnotes 
1The kurtosis of a random variable X with probability 

density f (x) is defined as  

4

2 2

( ) ( )
.

( ( ) ( ) )

x x f x dx
k

x x f x dx

−
=

−
∫
∫

 

The kurtosis of a Gaussian is 3, and distributions with kur-
tosis higher than 3 are often referred to as heavy-tailed.  

2The differential entropy H of X is defined as  

H(X) = – . 2( ) log ( )f x f x dx∫
Differential entropy is a measure of information content 
for a continuous random variable. The distribution with 
variance σ 2 that maximizes differential entropy is the 
Gaussian, which has differential entropy 

2 2
1 log 2 2.05 log
2

eπ σ σ≈ +  

bits. On the other hand, a distribution that concentrates all 
probability density near a few discrete points could have an 
arbitrarily negative differential entropy.  

3The mutual information of random variables X and Y 
is defined as I(X, Y) = H(X) + H(Y) – H(X, Y ), where H(X) 
and H(Y ) are the differential entropies of X and Y , respec-
tively, and H(X, Y) is the differential entropy of their joint 
density. 

4The illumination map of Figure 18(b) was synthesized 
in the spherical harmonic domain. The maps of (c) and (d) 
were synthesized in a rectangular domain corresponding to 
an equal-area cylindrical projection of the sphere. In (c) and 
(d), we performed principle component analysis in color 
space to produce three decorrelated color channels, each of 
which is a linear combination of the red, green, and blue 
channels. We then synthesized textures independently in 
each channel of this remapped color space, as suggested by 
Heeger and Bergen (1995). Unfortunately, the nonlinear 
dependencies between the decorrelated color channels are 
much more severe for high dynamic range illumination 
maps than for the 8-bit images common in the texture 
analysis literature. To reduce artifacts associated with these 
dependencies, we passed the original illumination maps 
through a compressive nonlinearity on luminance before 
wavelet analysis, and then applied the inverse nonlinearity 
to the synthesized illumination maps. The compressive 
nonlinearity leads to a less heavy-tailed distribution of pixel 
intensities.  
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