
Apparent Ridges for Line Drawing
Tilke Judd1 Frédo Durand1 Edward Adelson1,2

1MIT Computer Science and Artificial Intelligence Laboratory 2 MIT Dept. of Brain and Cognitive Sciences

Shaded View Contours Suggestive Contours Ridges & Valleys Apparent Ridges

Figure 1: The Bust model rendered with several different feature lines. We introduce apparent ridges on the right. They correspond to the
maxima of the normal variation with respect to the viewing plane. Note in particular the left side of the face (to the right) in the suggestive
contour drawing and the nose drawn with ridges and valleys.

Abstract

Three-dimensional shape can be drawn using a variety of feature
lines, but none of the current definitions alone seem to capture all
visually-relevant lines. We introduce a new definition of feature
lines based on two perceptual observations. First, human percep-
tion is sensitive to the variation of shading, and since shape percep-
tion is little affected by lighting and reflectance modification, we
should focus on normal variation. Second, view-dependent lines
better convey smooth surfaces. From this we define view-dependent
curvature as the variation of the surface normal with respect to a
viewing screen plane, and apparent ridges as the loci of points that
maximize a view-dependent curvature. We present a formal defi-
nition of apparent ridges and an algorithm to render line drawings
of 3D meshes. We show that our apparent ridges encompass or
enhance aspects of several other feature lines.

Keywords: Line Drawing, NPR, ridges, valleys, apparent ridges

1 Introduction

Suppose we wish to depict the shape of a rounded cube, which is
viewed from a certain direction. One approach is photorealistic
rendering. We choose a BRDF and a lighting distribution, and cal-
culate the luminance value that each pixel would have if the real
physical object were viewed under those conditions. Figures 2(a)
and (b) show two examples, with different choices of BRDF and
lighting. Depending on the choices, which are rather arbitrary, the
shading and highlights will change. With photorealism there is no
way to avoid these arbitrary choices.

An artist will often use a line drawing to convey an object’s shape
in a manner that is independent of BRDF and lighting. Figure 2(c)
shows an example. This image is not photorealistic, since there are
no conditions under which the cube’s image would actually have
these pixel values. Nonetheless the line drawing captures, in a com-
pact and abstract manner, the essential visual properties that are
shared by the photorealistic renderings. This image was generated
by the method we will describe.

(a) (b) (c)
Figure 2: Depiction of a cube with traditional computer graphics
shading and with line drawing (using our apparent ridges).

Line drawing is a popular topic in non-photorealistic rendering
(NPR). The key question is: where do you put the lines? Various
rules have been proposed. The bounding contour, or silhouette, is
obviously important, as are occluding contours that occur within
the object. Discontinuities of surface normal, such as those of a
cube, produce a ridge line that should certainly be drawn. How-
ever, most natural objects contain bumps, dips, and undulations of
varying geometry, and it is not clear how these features should be
depicted with lines.

A number of approaches have been described. In image-based
approaches, the object is rendered to form an image or geometric
buffer, and then image processing methods such as edge detection
yield an output drawing [Saito and Takahashi 1990; Decaudin 1996;
Hertzmann 1999; Pearson and Robinson 1985; Lee et al. 2007].
The result is often visually pleasing, but the pixel-based representa-
tion suffers from low precision due to the loss of 3D scene informa-
tion during rendering, and is unsuitable for additional processing.
For example, lines can’t be rendered with natural brush strokes un-
less curves are extracted from the edge map.

In object-based approaches, one finds curves that have special
properties in terms of the differential geometry of the surface.
Several researchers [Koenderink 1990; Ohtake et al. 2004; Inter-
rante et al. 1995] have characterized various such curves, including
parabolic lines, which divide hyperbolic from elliptic regions, as
well as ridges and valleys, which occur at points of extremal cur-
vature. (Note: in the field of topography, the terms “ridge” and
“valley” have a different definition). These curves capture impor-
tant object properties but do not make natural looking line drawings.
They are locked to the object surface, and do not slide along it when
the viewpoint changes. As a result, the objects portrayed by ridges
and valleys tend to look overly sharp. Given the widely-accepted
limitations of object-space ridges and valleys, we believe a major
contribution of our work is defining the first successful ridge-like
features for NPR.

It is also possible to define curves that have view dependence.
The silhouette is one example: it is the loci of points that is only
defined with respect to a viewing screen. An important type of view
dependent curves, called suggestive contours, has recently been de-
scribed by DeCarlo et al. [2003; 2004]. Suggestive contours are
extensions of occluding contours. They are curves along which the
radial curvature is zero. They are locations which are almost con-
tours, and they correspond to true contours in nearby viewpoints.

Suggestive contours capture some, but not all, of the desirable
curves that comprise a line drawing. For example, they ignore the
dihedrals that define a cube, and will entirely miss the ridge-like
features that define the noses in the drawings of Fig. 3. There is
presently no single rule that will generate the full set of desirable
lines, so the usual practice is to combine multiple rules.

Our new method gets a rich and comprehensive set of lines with
a single rule. This rule is motivated by perceptual considerations.
Human observers are highly sensitive to line-like and edge-like fea-
tures, i.e., points of high luminance variation. A given object, when
viewed from a given position, will tend to have such features in a
limited set of locations, and these locations tend to be stable across
different choices of BRDF and illumination. However, unlike the
ridges and valleys of differential geometry, our features are view de-
pendent, which we find is necessary in order to give the line drawing
a natural appearance to a human viewer. The lines are drawn at the
same places that “line detectors” and “edge detectors” are likely to
fire when presented with a rendered image of the same object in the
same pose.

Our rule can be succinctly stated as follows: Draw a line when
the surface normal is changing at a locally maximal rate with re-
spect to image position. We refer to these lines as “apparent ridges”.
They depend on the curvature of the object surface as well as the
foreshortening that occurs in projection to the viewing plane.

Figure 3: Lines drawings by Matisse and Juan Gris. Notice the de-
piction of the nose which exhibits ridge-like features. Left to right,
Etched illustration for the poem “La chevelure d’une flamme” by
Matisse 1 c©2007 Succession H. Matisse, Paris / Artist Rights So-
ciety (ARS), New York, and Portrait of Max Jacob by Juan Gris,
c©2007 Artists Rights Society (ARS), New York / ADAGP, Paris.

Motivation and overview If a line drawing is to be indepen-
dent of the rendering parameters of BRDF and illumination, then
the only remaining local property is the surface normal. This led Fe-
lix Klein and after him Hilbert and Cohn-Vossen [1952] and Koen-
derink [1980] to hypothesize that parabolic lines were of special
significance in artist’s drawings. However, attempts to leverage this
idea have largely failed: parabolic lines do not yield compelling
drawings. Likewise, line drawings based on ridges and valleys tend
to look “blocky.” These drawings look particularly awkward when
they are used in animations, as the lines appear to be stuck to the
surface, and do not slide naturally over the surface. We believe that
the use of strict view independence leads inevitably to this sort of
problem.

An alternative approach is to draw lines at locations that are
view dependent but are stable across the other rendering condi-
tions. The idea that this might be possible is motivated by the
observations of Fleming et al [2004], who showed that the local
orientation structure of rendered objects was similar across multi-
ple choices of BRDF and environment map, and therefore could
be used as an invariant description the object’s appearance (as seen
from a given viewpoint). They hypothesized that the human visual
system extracts these invariant properties and uses them to infer the
3-D shape.

Rapid luminance changes occur at points where the angle of the
surface normal is changing rapidly. Points in the image with max-
imal view-dependent curvature (i.e. our apparent ridges) will usu-
ally contain maximal luminance gradients. Similarly, Durand et al.
[2005] showed that for realistic rendering, such points have high-
est local frequency content in an image. In computer vision, Yuille
[1989] has derived equations in search of photometric invariants
that are similar to our lines.

We first describe necessary background differential geometry
and introduce the equations for view-dependent curvature and ap-
parent ridges in Section 2. Given the mathematical definition of
apparent ridges, we present algorithms to extract them on discrete
meshes in Section 3. We show results of apparent ridge line draw-
ings in Section 4. We demonstrate that apparent ridges are useful
for conveying shape information and show how they are related to
other feature lines.

1Reproduction, including downloading of Matisse works is prohibited
by copyright laws and international conventions without the express written
permission of Artists Rights Society (ARS), New York.

2 Apparent Ridges and Valleys

We develop the equations for view-dependent curvature and ap-
parent ridges. First we review traditional concepts of differen-
tial geometry–curvature, ridges, valleys–that are defined from the
first and second derivatives of the normal. Then, to define view-
dependent curvature and apparent ridges, we calculate the same
derivatives with one key change: we derive with respect to a screen
plane instead of the surface.

2.1 Ridges and Valleys on Surfaces

Given a smooth closed surface, n(m) is the outward facing unit nor-
mal to the surface at a point m. The tangent plane at m is perpen-
dicular to the normal. Intuitively, curvature of a surface represents
how a surface bends, or how the normal changes from point to point
on a surface. We define the curvature operator S at point m as

S(r) = Drn

where Drn is the directional derivative of the normal along vector
r in the tangent plane. S, which is known as the Weingarten map or
the shape operator, is a linear map from the tangent plane at m to
a tangent of the Gauss sphere parallel to the tangent plane. Given a
choice of basis, S can be represented as a symmetric 2×2 matrix.

For every point on the surface, the maximum and minimum prin-
cipal curvatures k1 and k2 are the eigenvalues of S where |k1| ≥ |k2|.
The associated eigenvectors e1 and e2 correspond to the maximum
and minimum principal curvature directions.

Ridges and valleys are the loci of points at which the principal
curvature assumes an extremum in the principal direction. They are
found where De1 k1 = 0, where ridges have k1 > 0 and valleys have
k1 < 0. In addition, we use the higher-order derivative to ensure
we get the correct flavor of extrema: the higher order derivative
must be negative (positive) to ensure a ridge (valley) is a maximum
(minimum) of curvature.

2.2 View-dependent Curvature

By including viewing projection with curvature, we define view-
dependent curvature, which will lead to apparent ridges.
Projection We consider a viewing screen plane V on which we
draw a line drawing of an object M ⊂ R3. We define a parallel
projection P that maps points m ∈M onto points m′ ∈V . If m is not
a contour point, there exists a neighborhood where P has an inverse,
P−1 (essentially a ray-casting function). We can locally express the
normal as a function of screen location n′(m′) = n(P−1(m′)).

At a point m, the Jacobian of P, which we call P̄, takes tangent
vectors at m to vectors in V . Given a choice of basis (r1,r2) for the
tangent plane and (s1,s2) for the screen plane, P̄ can be expressed
as a 2×2 matrix

P̄ =
(

r1 · s1 r2 · s1
r1 · s2 r2 · s2

)
.

Note that P̄ is different at every point on the object and is invertible
everywhere except at the contour points.
View-dependent Curvature Intuitively, view-dependent cur-
vature is how much the surface is seen to bend from the viewpoint.
It takes into consideration both the curvature of the object and the
foreshortening due to surface orientation. Formally, we define the
view-dependent curvature operator Q at a point m′ on the screen as

Q(s) = Dsn′

where Dsn′ is the directional derivative of the object normal along
vector s in the screen plane. The view-dependent curvature operator

screen

b

a a'

b'

P-1

object

Figure 4: The maximum view-dependent curvature at b′ is much
larger than at a′ uniquely because of projection.

Q at a point m′ is a linear map from the screen plane into the tangent
of the Gauss sphere. Note that this derivative is taken with respect
to the screen space, but the change in normal is in the object space.
We do not project the normal on to the screen space because we
are motivated by the shading which is based on the object space
normal. Projecting the normal into the screen space would ignore
potential lighting components along the view direction.

We apply the chain rule to obtain Q in terms of surface curvature,

Q = SP̄−1. (1)

where the basis of the tangent plane chosen for expressing S and P̄
are the same. Q(s) is a vector in the tangent plane that describes
how the surface normal changes when one moves along vector s on
the screen.

We are interested in the extrema of the magnitude of the change,
so we define the maximum view-dependent curvature as

q1 = max
‖s‖=1

‖Q(s)‖. (2)

That is, the maximum view-dependent curvature q1 is the maximum
singular value of Q (the square root of the maximum eigenvalue
of QT Q). It is achieved when s is the maximum singular vector
of Q. This singular vector, denoted by t1, is the maximum view-
dependent principal direction. Note that unlike curvature, which is
defined from eigenvalues of S, view-dependent curvature is defined
from singular values of Q because the input and output spaces of Q
are different.

Equivalently, we can define the maximum view-dependent cur-
vature as

q1 = max
‖P(r)‖=1

‖S(r)‖

where r is a vector in the tangent plane. This is the maximum of
the norm of the object curvature over an ellipsoid elongated in the
view direction (Fig. 4).

View-dependent curvature adds view dependency to the tradi-
tional definition of curvature. On front facing parts of an object
where the object normal points towards to the screen, curvature and
the view-dependent curvature are the same (Fig. 5). Where the ob-
ject turns away from the screen plane, the view-dependent curvature
becomes much larger and the view-dependent principal direction is
shifted towards the view vector.

2.3 Apparent Ridges

Following the definition of ridges, we define apparent ridges as the
loci of points at which the maximum view-dependent curvature q1
assumes a local maximum in the principal view-dependent curva-
ture direction t1. This occurs where

Dt1 q1 = 0. (3)

Maximum
curvature

Maximum
curvature

0

high

Maximum
view-dependent curvature

Maximum
view-dependent curvature

Figure 5: Comparison of curvature and view-dependent curvature.
At front facing parts of the object, the values are similar. As the ob-
ject normal turns away from the viewer, view-dependent curvature
becomes much larger due to projection. View-dependent curvature
approaches a maximum of infinity at the contours and so contours
are extracted as apparent ridges.

(b) (c) (d)(a)

t1

−t1

Dt1q1

−Dt1q1

u

u′

v

v′

w

w′

p

t1

Figure 6: We find apparent ridges on meshes with the following
steps: For each edge, we flip t1 so that it points towards increasing
view-dependent curvature. If both t1 along the edge point in op-
posite directions, there is a zero crossing. To test for maxima, we
drop a perpendicular from each vertex to the zero crossing line. If
t1 at both vertices of an edge make an acute angle with their per-
pendicular, the zero crossing is a maximum (as in c). If not, the zero
crossing is eliminated as a minimum (as in d).

We keep only the maximum points by selecting those whose higher-
order derivative is negative. Note that view-dependent curvature
is always positive, yet our line definition captures ridge-like and
valley-like features. For example, the line for the profile of the
nose and the line between the lips on the bust model (Fig. 1) are
ridge-like and valley-like features respectively. We can distinguish
between features by the sign of the object space curvature: ridge-
like features have k1 > 0 and valley-like features have k1 < 0.

3 Apparent Ridges on Meshes

We adapt view-dependent curvature computations to discrete trian-
gular meshes.

Estimating view-dependent curvature We leverage stan-
dard techniques to estimate the curvature S at each point on the
mesh [Rusinkiewicz 2004]. We then multiply by the inverse projec-

tion to obtain Q = SP−1. Although our derivation relies on parallel
projection, in practice we approximate a perspective camera using
a local parallel projection for P in the neighborhood of each vertex.
More specifically, we consider the projection line for each vertex to
be the line between the viewpoint and the vertex of the object. From
Q, we compute our maximum view-dependent curvature q1 and a
maximum view-dependent curvature direction t1 at each vertex.
Estimating the view-dependent curvature derivative We
estimate Dt1 q1 using finite differences (Fig. 6(a)). To compute the
derivative at mesh vertex p, we compute view-dependent curvature
at two points w and w′ on edges of triangles adjacent to p in the
direction t and average the finite difference between p and the two w
points. View-dependent curvature at point w on an edge is obtained
by linear interpolation between the two vertices v and u.
Finding a consistent t1 field Note that t1 is a vector which
runs along a line from the vertex in one of two opposite directions
(Fig. 6(b)). To make this field consistent across the mesh, we flip
t1 to point in the direction of the positive derivative, where view-
dependent curvature is increasing.
Locating zero crossings We use a method inspired by Ohtake
et al. [2004] to locate the zero crossings of the view-dependent cur-
vature derivative on a mesh given the consistent t1 field (Fig. 6(c)
and (d)). If the t1 of both vertices along an edge point in the same
direction, then there is no zero crossing. If they point in different
directions (defined as > 90 degrees) then there is a zero crossing.
We interpolate the location of the zero crossing using the values of
the derivatives at each vertex [Hertzmann and Zorin 2000].
Trimming Zero crossings locate both minima and maxima of
normal variation, but we only want to draw lines at maxima. For
this, we drop a perpendicular from each vertex to the zero cross-
ing line (Fig. 6(c) and (d)). If the positive t1 at each vertex makes
an acute angle with the perpendicular, then the zero crossing is a
maximum. If not, the zero crossing is eliminated. This test is more
robust than that suggested by Ohtake et al. [2004] who approximate
the perpendicular by the edge direction.
Thresholding After minima are trimmed, many lines remain.
This is because our method finds all local extrema independent
of whether the view-dependent curvature is high or low. Infor-
mally, not only do we want points where the magnitude of the
view-dependent curvature is locally a maximum, but we also want
this maximum to be high. Therefore we eliminate lines based on a
threshold of the view-dependent curvature. The threshold is scaled
by the feature size of the mesh (average edge length) to make it
dimensionless. All line definitions require a similar thresholding.

4 Results and Analysis

Performance evaluation Ridges and valleys and suggestive
contours are quick to compute since the curvature is stable across
viewpoints and can be precomputed for an object. Apparent ridges
rely on view-dependent curvature and its derivative which must be
recomputed for each viewpoint. With our unoptimized code on a
2.33 GHz Intel Core 2 Duo Macintosh, apparent ridges are com-
puted in real time for small meshes,∼ 1.5 seconds for 50,000 poly-
gon meshes, and ∼ 9 second for 250,000 polygon meshes.

In addition to performance, a limitation of apparent ridges is that
they involve higher-order derivatives, which makes them prone to
numerical noise in digital meshes.

Qualitative evaluation We now discuss how apparent ridges
compare to the other major feature lines used for line drawing. For
fair comparison, we used constant stroke width and sharp cutoffs
for line ends, and thresholded each image to match the number of
gray pixels per image.

Silhouettes and Contours Contours are located where the
normal is perpendicular to the view direction. As we move towards
the contour, the view-dependent curvature approaches a maximum
of infinity because of projection (Fig. 5). Though view-dependent
curvature has a singularity at the exact contour, our apparent ridge
computation technique on meshes does extract contours. Apparent
ridge images in this paper are obtained without traditional contour
extraction. This is important because it allows apparent ridges to
stand alone, whereas other lines must combine with contours.

Ridges and Valleys Apparent ridges are closely related to tra-
ditional ridges: they share the same definition modified by a pro-
jection. By taking this projection into account however, appar-
ent ridges are perceptually more pertinent than ridges and valleys.
When the effect of projection is small, at front facing parts of the
model, ridges and apparent ridges are similar. On parts of the object
that turn away from the viewer, apparent ridges and ridges differ.

In cases where ridges and valleys do well, as on rigid objects like
the rocker arm (Fig. 7) and the base of the column (Fig. 12), appar-
ent ridges successfully mimic the same detail. In cases where ridges
do less well, apparent ridges adjust ridges to be more perceptually
pleasing. As seen in the tablecloth (Fig. 8), ridges capture the im-
portant rim of the table, while apparent ridges suggest a smooth fea-
ture by depicting the rim line with the ends disappearing. The same
is true for the smoothed cube and dodecahedron (Fig. 10). Ridges
capture the arbitrary maximal folds of the cloth which have little
perceptual importance, while apparent ridges merge these ridges
into more important nearby contours. Because ridges and valleys
are fixed on a object, they can appear as artificial surface markings
and produce boxy looking nose and mouth renderings of the Bust
(Fig. 1) and Max Planck (Fig. 9) models. Apparent ridges create
more appealing drawings on these human forms.

Apparent ridges are also defined in cases where ridges are ill-
defined. On a symmetric Gaussian bump (Fig. 13), the apparent
ridge lines extend the contour, but ridge lines don’t exist because
there is no maximum of curvature on this symmetric object.

Suggestive Contours Apparent ridges and suggestive con-
tours are fundamentally different lines. Intuitively, suggestive con-

Figure 7: Rocker-arm model. Suggestive contours miss many im-
portant rim features which apparent ridges include. As seen on the
shaded view image, suggestive contours do not line up with edges
but rather exist on the faces of the model. Apparent ridges extend
contours along the edges of the object, while suggestive contours
extend contours onto the face of the object.

Figure 9: Planck model. Note that the nose of the ridge and valley
drawing is unnaturally sharp. Suggestive contours seem to display
excessive lines at the back of the head and don’t look as natural as
apparent ridges especially in the mouth and eye region.

tours look at an extremum of the normal, where we look at the ex-
tremum of the normal variation. Suggestive contours look at curva-
ture in the direction of the view vector, where we look at curvature
in the direction of t1, the direction of maximal normal variation as
seen from the screen plane. These directions are defined differently,
but sometimes they align: foreshortening happens along the view
direction, thus inflating the view-dependent curvature in that direc-
tion and making it more likely to be the direction of t1. However,
even when these directions are the same, suggestive contours find
where the curvature in that direction is zero, while we find where
the curvature is maximum.

Given that suggestive contours and apparent ridges are so differ-
ent, it is hard to say that one is clearly better than the other. Rather,
both provide an interesting choice of lines with different strengths
and weaknesses.

Suggestive contours and apparent ridges trade off situations
where they draw single or double lines. In the brain model (Fig. 11),
suggestive contours create double lines at the crevices, while we
provide cleaner single lines. We locate the valley of the crevice,
while suggestive contours locate two inflection points surrounding
the valley. However, in the column model, (Fig. 12), we provide
two apparent ridge lines for the beveled wing surface (at the ridge
and valley), whereas suggestive contours provide a simpler one (at
the inflection). This is also seen on the middle of the column.
Drawing single inflection lines can be good for complex models,
but tends to over simplify simple models. In the shaded view of the

Figure 10: Rounded dodecahedron and cube. Compare lines of
contours (green), ridges and valleys (purple and brown), suggestive
contours (blue), and apparent ridges (red). Note how suggestive
contours consistently miss edges of convex objects and lead to an
impoverished sense of shape.

Figure 8: Tablecloth model. Notice how the apparent ridges convey both the smoothness of the rim of the table and the drapery of the
tablecloth while suggestive contours completely miss the rim. Suggestive contours are drawn at dark regions of the shaded view, while initial
experiments show that apparent ridges are drawn at important locations independent of a specific lighting situation.

Figure 11: Brain model. Suggestive contours are drawn at inflec-
tion points of a surface (gray dots) while apparent ridges are drawn
at ridge and valley-like parts of the surface (black dots). On this
model, suggestive contours draw double lines surrounding surface
valleys while apparent ridges draw one in the crevice. Both produce
pleasing drawings.

Figure 12: Column model. While the middle of the drawing is
superior with suggestive contours, the bottom and top parts are su-
perior using apparent ridges. The top angel is more clearly defined.
At the bottom, the boundary between the circular column and the
square base is clearly drawn with apparent ridges, while sugges-
tive contours use a series of broken lines in the opposite direction
(vertical). This is because suggestive contour lines are drawn in
directions biased to be parallel to the view plane.

Figure 13: Gaussian bump from left to right: shaded view, occlud-
ing contour, suggestive contours and apparent ridges. Note that
both the suggestive contours and apparent ridges extend contours.

rocker-arm model (Fig. 7), suggestive contours appear on the face
of surfaces between the apparent ridge lines and lead to an impov-
erished sense of shape as compared to apparent ridges.

One of the strong attributes of suggestive contours is that they
extend contour lines. Apparent ridges seem to as well (Fig. 13). Ap-
parent ridges lengthen the contour because nearby places of “almost
contour” are locations where the perspective foreshortening effect
is high, leading to high view-dependent curvature values. Note that
for the rocker model (Fig. 7), while apparent ridges extend contour
lines along edge-like structures, suggestive contours extend contour
lines onto the face of surfaces.

Some important features in convex regions of an object are not
conveyed by suggestive contours. For example, no lines are drawn
on the rim of the table (Fig. 8) or inside the rounded cube or do-
decahedron (Fig. 10), whereas apparent ridges successfully locate
important features on these models.

Comparison to edge detection Given head-on illumination
with a single light source at the viewpoint and lambertian shad-
ing, suggestive contours are drawn in the shaded areas of an object.
As seen in the tablecloth example (Fig. 8), dark shaded areas cor-
respond directly to the suggestive contour lines. These lines only
make sense given a certain shading setup; if the light is moved, the
suggestive contour lines would seem arbitrary. On the other hand,
our initial experiments show that apparent ridge lines are drawn
where shading edges are detected as an average over many light
sources, suggesting that apparent ridges are drawn at locations that
are important independent of the light direction.

In Fig. 14, we show a Monte-Carlo experiment where a diffuse
surface is rendered from a given viewpoint with thousands of ran-
dom lighting configurations. The average output of a Canny edge
detector [Canny 1987] on those thousands of images matches re-
markably well the lines extracted with our technique. We have per-
formed similar experiments with real photographs with flash illu-
mination and compared Canny edge detection to an apparent ridge
drawing performed on a 3D scan of the object (Fig. 15). While the

Figure 14: Experiments with Canny edge detection. (a) Average
edge image for 1 light source and Lambertian shading over 10,000
light situations. (b) Average edge image for 10 light sources and
Lambertian shading over 10,000 images. (c) Apparent ridges.

Example photograph Average edge map Apparent ridges

Figure 15: Comparison between the average Canny edge detection
on 120 photographs with different lighting and our apparent ridges.

viewpoints are not matched perfectly, we can see that the two ex-
traction approaches agree, which confirms that our lines are related
to edges in shaded views. This also draws interesting relation to
Raskar et al.’s [2004] NPR camera.

5 Conclusion

We have introduced apparent ridges for non-photorealistic line
drawings. Apparent ridges produce visually pleasing line drawings,
and capture important information about an object’s shape. A vari-
ety of line types, such as contours and the sharp ridges of a polyhe-
dron, are special cases of our definition. Where ridges and valleys
do well, apparent ridges appear in similar locations. Where ridges
and valleys are rigid and boxy, apparent ridges modify them to be
more perceptually pertinent. Apparent ridges are related to, but dis-
tinct from, suggestive contours. Both are based on view dependent
and view independent factors. Both produce pleasing images, but
in many cases we find that apparent ridge images are more appeal-
ing in appearance. They produce more natural images for facial
features, and more informative images for convex surfaces. Initial
edge detection experiments also suggest that apparent ridges are
important lines independent of a specific lighting situation.

Acknowledgments This work was supported by a NSF CA-
REER award 0447561 and Grant No. 0429739. Frédo Durand ac-
knowledges a Microsoft Research New Faculty Fellowship and a
Sloan Fellowship. Tilke Judd was supported by an NSF graduate
fellowship. We thank Rusinkiewicz and DeCarlo for their rtsc
software. We thank Yann LeTallec, MIT pre-reviewers and espe-
cially the SIGGRAPH reviewers for their extensive and insightful
feedback on this work.

References

CANNY, J. 1987. A computational approach to edge detection. In
RCV87, 184–203.

DECARLO, D., FINKELSTEIN, A., RUSINKIEWICZ, S., AND
SANTELLA, A. 2003. Suggestive contours for conveying shape.
ACM Transactions on Graphics 22, 3 (July), 848–855.

DECARLO, D., FINKELSTEIN, A., AND RUSINKIEWICZ, S. 2004.
Interactive rendering of suggestive contours with temporal co-
herence. In NPAR 2004, 15–24.

DECAUDIN, P. 1996. Cartoon looking rendering of 3D scenes.
Research Report 2919, INRIA, June.

DURAND, F., HOLZSCHUCH, N., SOLER, C., CHAN, E., AND
SILLION, F. X. 2005. A frequency analysis of light transport.
ACM Transactions on Graphics 24, 3 (Aug.), 1115–1126.

FLEMING, R. W., TORRALBA, A., AND ADELSON, E. H. 2004.
Specular reflections and the perception of shape. Journal of Vi-
sion 4, 9, 798–820.

HERTZMANN, A., AND ZORIN, D. 2000. Illustrating smooth
surfaces. In Proceedings of ACM SIGGRAPH 2000, Computer
Graphics Proceedings, Annual Conference Series, 517–526.

HERTZMANN, A. 1999. Introduction to 3d non-photorealistic ren-
dering: Silhouettes and outlines. In Non-Photorealistic Render-
ing. SIGGRAPH 99 Course Notes, S. Green, Ed. ACM.

HILBERT, D., AND COHN-VOSSEN, S. 1952. Geometry and the
Imagination. Chelsea, New York.

INTERRANTE, V., FUCHS, H., AND PIZER, S. 1995. Enhancing
transparent skin surfaces with ridge and valley lines. In VIS ’95:
Proceedings of the 6th conference on Visualization ’95, IEEE
Computer Society, Washington, DC, USA, 52.

KOENDERINK, J. J., AND DOORN, A. J. V. 1980. Photometric
invariants related to solid shape. Optica Acta 27, 7 (July), 981.

KOENDERINK, J. J. 1990. Solid shape. MIT Press, Cambridge,
MA, USA.

LEE, Y., MARKOSIAN, L., LEE, S., AND HUGHES, J. F. 2007.
Line drawings via abstracted shading. ACM Transactions on
Graphics 26, 3 (July).

OHTAKE, Y., BELYAEV, A., AND SEIDEL, H.-P. 2004. Ridge-
valley lines on meshes via implicit surface fitting. ACM Trans.
Graph. 23, 3, 609–612.

PEARSON, D. E., AND ROBINSON, J. A. 1985. Visual communi-
cation at very low data rates. Proceedings of IEEE 73, 795–812.

RASKAR, R., TAN, K.-H., FERIS, R., YU, J., AND TURK, M.
2004. Non-photorealistic camera: depth edge detection and styl-
ized rendering using multi-flash imaging. ACM Transactions on
Graphics 23, 3 (Aug.), 679–688.

RUSINKIEWICZ, S. 2004. Estimating curvatures and their deriva-
tives on triangle meshes. In Symposium on 3D Data Processing,
Visualization, and Transmission.

SAITO, T., AND TAKAHASHI, T. 1990. Comprehensible render-
ing of 3-d shapes. In Computer Graphics (Proceedings of SIG-
GRAPH 90), vol. 24, 197–206.

YUILLE, A. L. 1989. Zero crossings on lines of curvature. Comput.
Vision Graph. Image Process. 45, 1, 68–87.

