Human-Assisted Motion Annotation

Ce Liu, William T. Freeman, Edward H. Adelson, and Yair Weiss


Abstract

Obtaining ground-truth motion for arbitrary, real-world video sequences is a challenging but important task for both algorithm evaluation and model design. Existing groundtruth databases are either synthetic, such as the Yosemite sequence, or limited to indoor, experimental setups, such as the database developed in [5]. We propose a human-inloop methodology to create a ground-truth motion database for the videos taken with ordinary cameras in both indoor and outdoor scenes, using the fact that human beings are experts at segmenting objects and inspecting the match between two frames. We designed an interactive computer vision system to allow a user to efficiently annotate motion. Our methodology is cross-validated by showing that human annotated motion is repeatable, consistent across annotators, and close to the ground truth obtained by [5]. Using our system, we collected and annotated 10 indoor and outdoor real-world videos to form a ground-truth motion database. The source code, annotation tool and database is online for public evaluation and benchmarking.

Project page

Information

title:
Human-Assisted Motion Annotation
author:
C. Liu,
W. T. Freeman,
E. H. Adelson and Y. Weiss
citation:
IEEE Conference on Computer Vision and Pattern Recognition
shortcite:
CVPR
year:
2008
created:
2008-01-01
keyword:
adelson
summary:
motion08
pdf:
http://persci.mit.edu/pub_pdfs/Motion_CVPR08.pdf
type:
publication
 
publications/motion08.txt · Last modified: 2010/06/10 09:55 by kimo
Accessibility