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Abstract

Recent progress in motion analysis has been
achieved with systems that estimate global pa-
rameterized motion by integrating multiple con-
straints. The success of these approaches de-
pends critically on the ability to segment con-
straints derived from di�erent motions. Hence
the problems of motion estimation and segmen-
tation are tightly coupled. We believe it is impos-
sible to solve these problems solely in the motion
domain, and that mechanisms of spatial form
analysis must be incorporated into the motion
estimation procedure.

We present a new framework which allows the
incorporation of form information in a grace-
ful manner. It combines concepts from percep-
tual organization with the powerful optimization
technique of EM. We show that the algorithm
is guaranteed to decrease a cost function at ev-
ery iteration, and that in the absence of form
information the cost function reduces to the one
minimized by EM. We demonstrate that the ap-
proach can achieve good motion estimation and
segmentation with challenging motion sequences.

Recent progress in motion analysis has been achieved
with systems that estimate global parameterized mo-
tion [Black and Jepson, 1994, Wang and Adelson, 1994,
Hsu et al., 1994, Bergen et al., 1992] These methods have
advantages over local optic ow in that they overcome the
local ill-posedness of the motion estimation problem by
integrating multiple constraints. The sucess of these ap-
proaches, however, depends critically on the ability to seg-
ment constraints derived from di�erent motions. Hence
the problems of motion estimation and segmentation have
become tightly coupled.
The joint solution of these problems remains di�cult,

even for scenes that are very simple. Consider, for example,
the scene shown in �g 1(a) (see also [Bergen et al., 1990]).
Two bars of di�erent grey shades are moving, one to the
left and one to the right. We will consider how several
kinds of motion analyses treat this input.
First, the output of a standard least-squares optic ow

routine is shown in �g. 1(b), as an arrow plot; the x and
y components of velocity are shown in �g. 1(c) and (d)
(velocities below some threshold con�dence are set to zero,
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Figure 1: a A simple image sequence which causes prob-
lems for traditional motion estimation algorithms. b Least
squares optical ow shown as an arrow plot c Least squares
optical ow horizontal component. d Least squares optical
ow vertical component.

the algorithm is an implementation of Lucas and Kanade
(1981) modi�ed according to [Simoncelli et al., 1991]).
Although this sequence is a synthetic one, it illustrates

problems that occur frequently in analyzing real sequences.

1. The ow is underconstrained in regions containing ex-
tended contours.

2. The T-junctions that occur where one contour crosses
the other form spurious features that move with spu-
rious upward velocities; moreover these features are
assigned high con�dence by standard techniques be-
cause they have \good" 2-D structure (the local esti-
mation is overconstrained).

3. The interiors of the bars, being textureless, have no
motion information, although one would like them to
be �lled with the motion assigned their contour. But
simply propagating the motion away from the contour
will spread it into the exterior as well as the interior.
Even propagation along contours is problematic since
the spurious T-junction motions will be propagated
along with the correct corner motions.

4. The ow �eld cannot explicitly convey the fact that

1



vx

vy

vx

vy

a b
c

ed f

Figure 2: (a) Normal ow (b) Constraint lines in velocity
space (c)-(e) Unambiguous feature motion

the two halves of the occluded bar are moving to-
gether in \common fate." Indeed there is no infor-
mation about grouping and segmentation in the ow
�eld representation.

The shortcomings of local analysis can be ameliorated by
accumulating constraints over larger regions as in several
recent approaches (e.g. [Black and Anandan, 1993]) but
�gure 2 shows that di�culties persist. The normal ows
along the ambiguous contours are shown in �g. 2(a). The
constraint lines may be accumulated into velocity space as
shown in �g. 2(b). There are four constraint lines, and their
thickness corresponds to the number of votes. Clearly there
are four major motion candidates, two of which are correct
(leftward and rightward), and two of which are incorrect
(upward and downward). The spurious upward motion has
more votes than any other motion.
As an alternative, one might ignore the ambiguous con-

tour motions and consider only the unambiguous motions
of the features. These are regions where the local regression
matrix is non-singular. As shown in �g. 2(c), (d), and (e),
four such points move to the left, four move to the right,
and four move upward. The upward motions are spurious
but there is no way to know this by looking at the local
regression matrix. In velocity space the feature motions
support three of the four motions that were supported by
the normal motions including the spurious upward motion.
Another global approach is the iterative nulling tech-

nique used by Bergen et al. (1990). In this approach the
entire image is warped by a parameterized ow �eld in an
attempt to null one of the motions; the procedure �nds the
dominant motion, removes it, and proceeds to the next.
Success can be veri�ed by aligning two frames and sub-
tracting; the region undergoing the motion should be ze-
roed out.
Fig. 3 shows the results of nulling with the four candidate

motions we have described above. The leftward and right-
ward motions, in �g. 3(a) and (b), successfully null much
of the image. However, the upward motion in �g. 3(c) is
even more successful. (The downward motion in �g. 3(d) is
less successful). The upward motion �nds a large spurious
object { the X { and tries to null it as a whole, as if it were
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Figure 3: Results of nulling with the four candidate mo-
tions described above a. leftward b. rightward . c upward
d. downward. The upward motion nulls the most pixels.

rigidly translating. The model fails to fully explain the
motion of either bar, but the model doesn't know about
bars. It only knows about pixels, and it nulls more pixels
than any other single motion.
The problems with motion analysis may be summarized

as follows. Standard optic ow techniques move from one
local representation (e.g. local gradients) to another lo-
cal representation (a ow �eld), and thus are limited in
their ability to integrate information across an image. Re-
cent techniques use more sophisticated representations and
allow more powerful integration of information. However
they still fall short of what is needed. A successful approach
will need to deal with such issues as occlusions, segmenta-
tion, contour ownership, and grouping. That is to say, it is
impossible to analyze motion without simultaneously an-
alyzing static form. Issues in perceptual organization are
likely to be critical for further progress in motion process-
ing.
Our goal is to introduce a new framework that will make

use of recent advances in motion analysis and optimization,
and will also allow us to incorporate form information in
a graceful manner. The optimization is based on Expec-
tation Maximization (EM) [Dempster et al., 1977], and
we combine it with concepts from perceptual organization
(PO). We call the new approach POEM. Since current un-
derstanding of PO is rapdily evolving, we have designed the
POEM to be exible enough to take advantage of various
new PO algorithms as they become available.

1 The Algorithm

1.1 Mixture Models and EM

We begin by reviewing the EM algorithm for mixture esti-
mation briey.
Mixture estimation refers to the estimation of parame-

ters given data that was generated by multiple processes.
In other words, assuming there are K models with parame-
ters �k, we measure observations fO(r)gr and estimate (1)
the model parameters �k and (2) the conditional probabil-
ity of each process generating each data point, which we
will denote, following [Jordan and Jacobs, 1994], by gk(r).
In the case of image segmentation, the O(r) are a set of
measurements obtained over the pixel array and gk(r) of-
fer a soft segmentation assigning each pixel to one or more
process.
EM treats mixture estimation as a special case of es-

timation with incomplete data. The underlying model is
that the complete data includes not only O(r) (the \visible
data"), but also the \hidden data", labels L(r) specifying
which process generated the data (L(r) is a binary vector
such that Lk(r) = 1 i� process k generated the data at r).
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The assumption is that if L(r) were known, the estimation
of �k would be simple.
The EM algorithm calls for replacing L(r) at each itera-

tion with its conditional expectation (this is the estimation,
or E step) based on the current parameter estimates. Since
the labels are assumed to be binary vectors, this expecta-
tion is merely the calculation of gk(r):

E(Lk(r)jO; �) = P (Lk(r) = 1jO; �) (1)

= gk(r) (2)

The maximization, or M step uses the current expecta-
tion of L(r) to maximize the likelihood of the parameters
(since it treats L(r) as known, this step is assumed to be
simple), and the algorithm is iterated until convergence.
Dempster et al. have shown that each iteration is guaran-
teed to increase the likelihood of the estimates of �k.
As noted by Redner and Walker (84) the attractiveness

of the EM algorithm for mixture estimation derives not
only from its convergence properties but also from the fact
that it often reduces to decoupled intuitive steps. For ex-
ample if we assume that fO(r)g is an IID sample of data
generated by adding Gaussian noise of variance �2 to the
model predictions, the algorithm reduces to the following
simple forms:
The E step:

gk(r) =
P (O(r) \ Lk(r) = 1)

P (O(r))
(3)

=
�ke

�D2

k
(r)=�2P

j
�je

�D2

j
(r)=�2

(4)

and the M step:

�k = argmin
�

X
r

gk(r)D
2(r; �k) (5)

where we have denoted by Dk(r) = D(r; �k) the deviation
of the data at location r from the prediction of model k,
and �k the prior probability of process k.
Note that for equal priors, equation 4 can be rewritten:

g(r) = softmin(D2

1(r)=�
2
;D

2

2(r)=�
2
:::) (6)

Therefore the algorithm can be characterized as assign-
ing each observation to the process which explains it the
best (minimizes deviation from prediction), and then up-
dating model parameters based on these assignments. The
parameter � speci�es the \softness" of the partition: for
in�nitely small � the softmin function approaches the min
function and each data point can be assigned to exactly
one process, while for larger � a datapoint can be assigned
to multiple processes. In this case the assignments, gk(r)
serve as weights to the parameter update stage.
These two decoupled steps bear an interesting resem-

blance to a recently proposed framework for motion seg-
mentation [Hsu et al., 1994] where it was observed that
many motion segmentation algorithms can be character-
ized as iterating the two steps of segmentation and motion
modeling. In the segmentation step elemental areas are as-
signed to models by measuring deviation from prediction,
and in motion modeling motion is estimated using the as-
signment of the elemental areas.

Thus many of the existing algorithms can be incorpo-
rated into the EM framework and viewed as maximum like-
lihood estimators. Choices of D(r) in the motion domain
can be, for example:

� Optic ow constraint [Horn and Schunck, 1981, Si-
moncelli et al., 1991, Otte and Nagel, 1994]

D
2

k(r) =
X
s

�rs(
@I

@r
vk(r) +

@I

@t
)2 (7)

where the sum is taken over a window (�rs) centered
on location r and the velocity vk(r) is the predicted
velocity at location r of model k.

� Angular deviation from normal velocity [Jepson and
Black, 1993]:

Dk(r) =
rI(r)vk(r)

krI(r)kkvk(r)k
(8)

(here vk(r) is assumed to be a three-vector in space
time)

� Deviation from constant intensity [Lucas and Kanade,
1981]

D
2

k(r) =
X
s

�rs(I(s+ vk(r); t+ �t)� I(s; t)):2 (9)

Again the sum is taken over a local window around r.

The choice of deviation constrains the M step, of course.
The �rst choice (eq. 7) has the advantage that it is
quadratic in v(r) and hence for any motion model where
the velocity �eld is assumed to be a sum of a small number
of basis functions (e.g. global translation, a�ne motion, or
rigid planar motion [Adiv, 1985]) the M step involves solv-
ing a low rank linear system (see appendix). Jepson and
Black (1993) obtained a closed form M step using the sec-
ond choice for global translation models. Finally the last
choice does not have a closed form M step but the M step
can be performed through successive linearizations [Lucas
and Kanade, 1981]. This �nal example illustrates the ad-
vantage of the EM algorithm: since it decouples the motion
estimation and segmentation problems, algorithms devel-
oped for estimating a single motion can be directly applied
to the estimation of multiple motions in the M step; the
only modi�cation needed is to weigh the constraints ac-
cording to gk(r).
In motion segmentation it is also desirable to include

an outlier model, since observations obtained at occlusion
boundaries, for example, will not be well explained by any
model. This is done by including an extra model, whose
parameters are �xed and whose deviation from prediction
is a constant: DK+1(r) = T . Thus locations for which de-
viations from all models are above T will not have signi�-
cant weight in the parameter update stage. This is equiv-
alent to using a robust measure of deviation D [Black and
Rangarajan, 1994]. Thus approaches which recursively es-
timate the dominant motion [Black and Anandan, 1993,
Irani and Peleg, 1992, Bergen et al., 1990] can also be in-
corporated into the EM framework where the mixture is
assumed to be composed of one model (K = 1) and an
outlier model.
To summarize, the EM algorithm de�ned by equations 4

and 5, which we will refer to hereafter as the classical EM
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algorithm, is an attractive framework for unifying many
motion estimation and segmentation algorithms. However,
as we show below, it is based on an assumption of indepen-
dence which is neither plausible nor helpful in the case of
motion segmentation.
The E step in equation 4 depends on two assumptions of

independence. The �rst is that the Gaussian noise added
in data generation is independent across space. The sec-
ond, and much less reasonable assumption is that the \hid-
den" label variables are also independent. As pointed
out by Baum (1977) , assuming a simple Markov de-
pendence between the hidden variables complicates the E
step signi�cantly. In one dimension, an e�cient forward-
backward procedure known as the Baum-Welch algorithm
can be used. Although this algorithm has proven tremen-
dously successful in applications such as speech recognition
(cf [Rabiner, 1989]) it can not be applied to cases such
as image segmentation when the labels are most naturally
viewed as lying on a two-dimensional grid. Suggestions
for estimating gk(r) in the multidimensional case include
Monte Carlo methods or approximating it by a simpler
function [Comer and Delp, 1994, Zhang et al., 1994].
Although the assumption of L(r) independence simpli-

�es the calculations, it is obviously misplaced in the case of
motion segmentation. It amounts to the assumption that
knowing the membership of a particular location yields no
information on the membership of all other locations in
the image. In image formation, this is rarely the case: e.g.
neighboring points with the same intensity are likely to be
from the same object. In the next section we describe a
modi�cation of the EM algorithm which can take advan-
tage of such information. For convenience, we will assume
equal priors (�k = 1=K) and unit variance in what follows.

1.2 The Perceptually Organized EM
algorithm

The POEM algorithm receives as input not only the mea-
sured observations O(r) but also a measure of expected
grouping w(r; s) which is assumed to be extracted by static
form analysis. w(r; s) can be any real valued symmetric
function w(r; s) = w(s; r) where positive values indicate
that location r and location s are likely to belong to the
same process, w(r; s) = 0 indicates that no information
on the membership of r is gained by knowing membership
of s and w(r; s) < 0 indicates that the two locations are
unlikely to belong to the same process. As a simple exam-
ple one could express the fact that neighboring measure-
ments are likely to belong together by using the function

w(r; s) = ekr�sk
2

.
The perceptually organized estimation (or POE) step

calls for collecting \votes",Vk(r) from other locations be-
fore updating gk(r):

Vk(r) =
X
s

gk(s)w(r; s) (10)

This vote is then combined with the local deviation from
model predictions to yield:

g(r) = softmin(D1(r)� �V1(r);D2(r)� �V2(r); :::) (11)

The M step remains as before.

Before deriving the modi�ed algorithm, we point out
a heuristic justi�cation for equation 11. Note that this
equation can be rewritten:

gk(r) =
�̂ke

�Dk(r)P
j
�̂je�Dj(r)

(12)

With:

�̂k(r) =
eVk(r)P
j
eVj (r)

) (13)

�̂(r) = softmax(�V1(r); �V2(r):::) (14)

Thus before taking into account the data at location r we
calculate an estimated prior probability, �̂k of that obser-
vation being generated by process k based on the votes
of other location. The parameter � determines the \soft-
ness" of the voting combination: for in�nitely large �, if
one model receives more votes than any of the others then
its prior will be one and all others zero. For zero � all
processes will have equal priors regardless of the voting re-
sults. These calculated priors are then combined with the
data in determining gk(r) just as in equation 4.

1.3 Derivation of Algorithm

To derive the POEM algorithm we make use of the recent
results regarding the equivalence between mixture estima-
tion and optimization based on statistical physics [Yuille
et al., 1994, Neal and Hinton, 1993]. As shown by these
authors, the classical EM algorithm described above can
equivalently be thought of as minimizing the following ef-
fective energy:

Eeff (�; g;O) =
X
r;k

gk(r)D
2

k(r) + �
2
X
r;k

gk(r) log gk(r)

(15)
subject to the constraint that gk(r) sum to one for all r.
Minimizing this e�ective energy with respect to g(r) while
holding � constant gives the E step, while minimizing with
respect to � while holding g(r) constant gives the M step.
(The proof of this statement is given in the appendix).
Note that this energy function seems like a reasonable thing
to minimize regardless of the maximum likelihood justi�-
cation for the EM algorithm. The �rst term penalizes for
deviation frommodel prediction, but the penalty is \gated"
by gk(r): if datapoint r was not generated by model k than
there is no penalty for deviation there. The second term
penalizes for the entropy of the distributions g(r), i.e. it
prefers soft partitions over those where each datapoint is
assigned to exactly one process. In this formulation, the
parameter � corresponds to the temperature in statistical
physics. Indeed, Yuille et. al (1994) have observed that
gradually decreasing � improves performance.
To obtain the POEM algorithm we add an extra term

to the e�ective energy:

E(�; g;O) =
X
r;k

gk(r)D
2

k(r) + �
2
X
r;k

gk(r) log gk(r)

��
X
r;k

X
s6=r

w(r; s)gk(r)gk(s) (16)

The extra term rewards coherence of the gating parameters
for those locations which are likely to belong to the same
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group. Minimizing this energy with respect to g(r) while
holding all other parameters �xed gives the POE step, and
minimizing with respect to �k while holding all other pa-
rameters constant gives the M step. Thus the POEM al-
gorithm is guaranteed to decrease the e�ective energy in
equation 16 at each iteration (see appendix).
For �xed �;O the e�cient energy 16 is similar to the

Ising energy of a magnetic material. In fact for K = 1
the POE step (eq. 11) exactly describes the dynamics of
a deterministic Hop�eld network [Hop�eld, 1984] which
has also been suggested for segmentation use [Geiger and
Girosi, 1991, Poggio et al., 1985, Geiger and Yuille, 1991].
To avoid confusion we note that in the above references
the Ising potential enforces coherence of the \line pro-
cesses", which are either present or absent at each loca-
tion. Here, the Ising term enforces coherence of the re-
gions of grouping. Darrell and Pentland have noted the
insu�ciency of line processes based approaches to dealing
with scenes involving complicated occlusions [Darrell and
Pentland, 1991].

2 Implementation

In this section we give examples of the POEM algorithm
where the static form constraints given as input are simply
based on local intensity and distance in the image (see
also [Murray and Buxton, 1987]). Although we will show
in the next section that these static form constraints are too
simplistic to deal with some image sequences, they serve
as a simple illustration of the algorithm's properties.
We use w(r; s) which decreases as a function of the spa-

tial distance r� s and as a function of the intensity di�er-
ence I(r)� I(s):

w(r; s) = exp(�
kr � sk

�2
1

�
kI(r)� I(s)k

�2
2

) (17)

If we set �1 such that votes only occur for neighboring pix-
els, this is one of the anisotropic di�usion kernels studied by
Perona and Malik (1989). This voting function causes the
membership probabilities gk(r) to di�use nonisotropically
in the image, respecting intensity boundaries. Since motion
measurements are in fact obtained over a local spatiotem-
poral window, the intensity associated with each measure-
ment was taken to be the intensity of the window's center.
The motion models were assumed to be a�ne, and the de-
viation from model prediction was measured by the optic
ow constraint 7. Thus the M step involved solving a rank
6 linear system.
Figure 4 shows the two frames given as input to the algo-

rithm. A hand is rotating in front of a static checkerboard.
The result of a standard optical ow algorithm is shown in
the bottom of �gure 4. The ow is noisy but the leftward
motion of the top of the hand can be discerned. Figure 5
shows the results of the classic EM algorithm on the se-
quence. The two global motions, shown at the top, are
correctly estimated; one corresponds to the static checker-
board the other to the rotating hand. However, the seg-
mentation, shown at the bottom is poor. Since the output
of the algorithm is a probabilistic segmentation we show
the segmentation of the �rst process (the checkerboard) in
�g. 5c by weighing each pixel by the probability of belong-
ing to process one g1(r). We have clipped pixels for which
g1(r) < g2(r). It can be seen that the untextured regions

Figure 4: Top Two frames given as input to the algorithm.
A hand is slowly rotating in front of a static checkerboard
Bottom Standard optic ow analysis on the two frames
(left: horizontal ow, right: vertical ow).

a b

c d

Figure 5: Results with classical EM algorithm. a. The
ow �eld for the �rst process. b. Flow �eld for the second
process. c. Pixels for which g1(r) > g2(r) weighted by
g1(r) d. Pixels for which g2(r) > g1(r) weighted by g2(r).
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Figure 6: Results with POEM algorithm incorporating
only proximity and intensity constraints. a. The ow �eld
for the �rst process. b. Flow �eld for the second process.
c. Pixels for which g1(r) > g2(r) weighted by g1(r) d.
Pixels for which g2(r) > g1(r) weighted by g2(r) .

are almost randomly assigned to one of the two processes,
while the vertical edges of the checkerboard and the hand
are assigned with high probability to their respective pro-
cesses. However, the horizontal edges in the checkerboard
are gray: this is a result of the fact that the two motion
�elds have identical horizontal components, a classic ap-
perture problem e�ect.
Figure 6 shows the results of the POEM algorithm on

the sequence. All parameters are identical to those used
in the previous experiment except that the parameter � in
equation 11 is nonzero. The ow �elds obtained (shown at
the top) are almost identical although the ow of the hand
has a stronger rotational component. The segmentation
is shown at the bottom with the same display format as
before. No morphological post-processing was done on the
output. The hand and the checkerboard are clearly seg-
mented. The segmentation is of course not perfect: The
untextured region between the thumb and the next �n-
ger, for example, is �lled in incorrectly. This is due to the
fact that there is neither a strong intensity gradient nor a
conict in motion information in that region. The space
between the two rightmost �ngers is not �lled in, due to
the vertical edge there, whose motion information conicts
with that of the hand. Even a small vertical edge, such as
the two fragments between the second and third and third
and fourth �ngers, are not grouped with the hand, while
regions in which there is only horizontal edges are �lled in.
In both the classic and POEM runs, convergence was

rapid and 10-15 iterations were more than su�cient.

3 Limitations of low-level form
constraints

While the voting function used in the previous section im-
proves performance on most sequences, it can not solve
image sequences such as the crossed bars depicted in the
introduction. The reason is that grouping based on com-
mon intensity does not determine contour ownership - the
problem of which contour belongs to which region.

a b c

Figure 7: The importance of contour ownership for motion
estimation.

Consider the images of �gure 7. Suppose that one has
correctly estimated the rightward motion of the contour
within the region indicated by the dashed circle. The same
contour motion could be caused by any of the three con�g-
urations shown in �g. 7(a), (b), or (c). In �g. 7(a), a gray
rectangle moves against a stationary white background.
The contour is owned by the gray region, so the contour's
motion should be propagated into the gray rectangle and
not into the white background . In �g. 7(b) a white rectan-
gle moves against a stationary gray background. The same
contour motion should now be propagated into the white
region because the contour ownership is reversed. In �g. 7,
a white/gray object moves as a whole against a stationary
black background. In this case the contour is owned by
both regions, since it is due to a surface marking rather
than to occlusion.

We have implemented the POEM algorithm with a rudi-
mentary form of contour ownership. There exist more
sophisticated schemes for dealing with perceptual orga-
nization [Nitzberg et al., 1993, Sajda and Finkel, 1994,
Williams, 1990], but our concern here was to see how well
POEM would work when the PO part was quite simple.
First, given a static image, we segment it into regions of
smooth intensity using a static POEM system. The models
are quadratic intensity patches; deviation from prediction
is intensity di�erence, and the spatial weighting function
is a Guassian. Next, we run a 3 by 3 window over the seg-
mented image and windows with three labels are marked
as containing T-junctions. We collect the number of times
any given segment occludes another in the T-junctions and
calculate the relative depth of any two segments. Finally
we use the segmentation to identify the motion measure-
ments which are contour measurements (those whose local
window contain exactly two patches).

Having calculated contour ownership we use the same
voting function as in equation 17 but set the \intensity",
I(r), of contour measurement according to their ownership.
Thus measurements for which ownership is certain have
an intensity equal to that of the foreground patch, and
measurements for which ownership is uncertain have an
intensity which is the average of the two patches and hence
will vote equally in both directions. The POEM algorithm
is identical to that described in the previous section.

Results of the classical EM algorithm on the sequence
discussed in the introduction (�g. 1) are shown in �gure 8.
The segmentation (g1(r)) is shown on the left, and the esti-
mated optic ow on the right (these ows are generated by
taking v1(r) in regions where g1(r) > g2(r) and vice versa,
regions where g1(r) = g2(r) default to zero velocity). Both
the correct interpretation and the spurious interpretation
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Segmentation Flow

Figure 8: The two interpretations arrived at by the classi-
cal EM algorithm randonly on alternate runs. Top: The
incorrect interpretation. Segmentation on the left and mo-
tion �eld on the right. With the exception of the corners,
this interpretation explains all the data. Bottom: The
correct interpretation. In both cases all untextured regions
are ambiguous.

Segmentation Flow

Figure 9: The interpretation arrived at by the modi�ed
EM algorithm. The untextured regions are correctly �lled
in.

are obtained randomly on alternate runs. In both cases,
the interior of the bars do not move with the contours.

The results of the POEM algorithm without the use of
contour ownership is identical to the bottom of �gure 8.
Since contour measurements vote for neighboring contour
measurements, the correct interpretation is favored. How-
ever, since the contour measurements do not vote for either
the interior or the exterior of the bars, only the contours
are estimated as moving. Compare this with the results
of the POEM algorithm where contour ownership is used,
which is shown in �gure 9 with the same format as �gure 8.
The correct interpretation is reached and the interiors of
the bars do move with the contours while the exterior back-
ground does not.

Finally, �gure 10 shows another pair of images where
contour ownership is essential. A cup occluding a paper
punch is captured by a translating camera. The results
of classical EM is shown in the top of �gure 11 and the
results with POEM are shown on the bottom. When con-
tour ownership is used, the motion of the interiors of the
objects are correctly estimated. In both cases, the contour
between the table and the background is grouped with the
paper punch due to common fate.

Figure 10: Top: Two frames from a sequence in which
contour ownership is essential. A cup occluding a paper
punch is captured by a translating camera. Bottom: Op-
tic ow on these two frames (left- horizonal ow, right -
vertical ow).
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Figure 11: Top: The interpretation arrived at by the clas-
sical EM algorithm segmentation on the left and motion
�eld on the right. The motions are correct but the inte-
riors of the objects are not moving with their contours.
Bottom: The interpretation arrrived at by POEM using
contour ownership. The interiors of the object move with
the contours.
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4 Discussion

As various researchers have remarked, for motion analy-
sis to succeed, it must be able to deal with multiple mo-
tions. We have argued here that static form constraints
are essential in the multiple motion case, and have intro-
duced a framework, perceptually organized EM, whereby
these constraints may be utilized by the motion analy-
sis system. The POEM algorithm gives an e�cient and
intuitive algorithm that uni�es many existing algorithms
for segmentation and points out their relationship to Hid-
den Markov Models and approaches based on statistical
physics. Our initial experiments demonstrate that even
rudimentary perceptual organization cues improve perfor-
mance signi�cantly on challenging synthetic and real image
sequences.
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A Proofs

Claim: Let:

Eeff (�; g;O) =
X
r;k

gk(r)D
2

k(r) + �
2
X
r;k

gk(r) log gk(r)

(18)
Then minimizing this e�ective energy with respect to g(r)
subject to the constraint that

P
k
gk(r) = 1 for all r gives

the classical E step, and minimizing with respect to � gives
the classical M step.
Proof: (This was proven by Neal and Hinton (1993) in

a more general form, we give an additional proof here for
compeleteness). Since � only �gures in the �rst term, the
M step is by de�nition the minimization of this energy
with respect to � while holding g �xed. To obtain the E
step note that ading a Lagrange multiplier to the e�ective
energy and setting the partial derivative with respect to
gk(r) equal to zero gives:

log gk(r) = �D
2

k(r)=�
2
� � (19)

TheseK equations at each location combined with the con-
straint that the gk sum to one give:

gk(r) =
e�D

2

k
(r)=�2P

j
e
�D2

j
(r)=�2

(20)

Which is precisely the E step with equal priors. The E step
with unequal priors, may be obtained by adding the cross
entropy between the gating parameters and the priors to
to the e�ective energy:

E(�; g;O) =
X
r;k

gk(r)D
2

k(r) + �
2
X
r;k

gk(r) log gk(r)

+�2
X
r;k

gk(r) log �k (21)

Claim: Let:

E(�; g;O) =
X
r;k

gk(r)D
2

k(r) + �
2
X
r;k

gk(r) log gk(r)

��
X
r;k

X
s6=r

w(r; s)gk(r)gk(s) (22)

Then minimizing this e�ective energy with respect to g(r)
subject to the constraint that

P
k
gk(r) = 1 for all r gives

the POE step, and minimizing with respect to � gives the
M step.
Proof: The proof is identical to the previous one. Adding

a Lagrange multiplier to the e�ective energy and setting
the partial derivative with respect to gk(r) equal to zero
gives:

log gk(r) = �
D2

k(r)

�2
+

�

�2

X
s

wrsgk(s)� � (23)

= �
D2

k(r)

�2
+

�

�2
Vk(r)� � (24)

TheseK equations at each location combined with the con-
straint that the gk sum to one give:

gk(r) =
e(�D

2

k
(r)+Vk(r))=�

2P
j
e
(�D2

j
(r)+Vj (r))=�

2
(25)
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Which is precisely the POE step.
Claim: The POEM algorithm decreases the e�ective en-

ergy at each iteration.
Proof: This follows trivially from the fact that at each

stage we are performing a minimization. Formally let ~�; ~g
be the current estimates of the parameters. And let:

g(r) = argmin
g

E(~�; g;O) (26)

then by de�nition, E(~�; g;O) � E(~�; ~g;O). The proof for
the M step is identical.
Claim: Let:

D2

k(r) =
X
s

�rs(
@I

@r
vk(r) +

@I

@t
)2 (27)

and let vk(r) be expressible as the sum ofN basis functions,
then the M step involves solving an N by N system of
linear equations.
Proof: The velocity at any location can be written

vk(r) = 	(r)�(r) where 	(r) is a 2 by N matrix which
gives the two components of the basis functions at each
location. The partial derivative of Eeff with respect to
vk(r) gives:

c@cc
@Eeff

@vk(r)
= gk(r)

@D2

k(r)

@vk(r)
(28)

= gk(r)(M(r)v(r) + b(r)) (29)

With:

M(r) =
X
s

2�rs

�
I2x IxIy
IxIy I2y

�
(30)

and:

b(r) =
X
s

2�rs

�
IxIt
IyIt

�
(31)

And using the chain rule, gives:

@Eeff

@�k
=

 X
r

gk(r)(	
t(r)M(r)	(r)

!
�

+

 X
r

gk(r)	
t(r)b(r)

!
(32)

Which gives an N by N linear system of equation for �k.
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