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ABSTRACT

Image segmentation provides a powerful semantic description of video imagery essential in image understanding and
efficient manipulation of image data. In particular, segmentation based on image motion defines regions undergoing similar
motion allowing image coding system to more efficiently represent video sequences. This paper describes a general iterative
framework for segmentation of video data . The objective of our spatiotemporal segmentation is to produce a layered image
representation of the video for image coding applications whereby video data is simply described as a set of moving layers.

1 INTRODUCTION

Segmentation is highly dependent on the model and criteria for grouping pixels into regions. In motion segmentation,
pixels are grouped together based on their similarity in motion. For any given application, the segmentation algorithm
needs to find a balance between model complexity and analysis stability. An insufficient model will inevitably result in
over segmentation. Complicated models will introduce more complexity and require more computation and constraints for
stability. In image coding, the objective of segmentation is to exploit the spatial and temporal coherences in the video data
by adequately identifying the coherent motion regions with simple motion models.

Block-based video coders avoid the segmentation problem altogether by artificially imposing a regular array of blocks
and applying motion coherence within these blocks. This model requires very small overhead in coding, but it does not
accurately describe an image and does not fully exploit the coherences in the video data. Region-based approaches,9,7,10

which exploit the coherence of object motion by grouping similar motion regions into a single description, have shown
improved performances over block-based coders.

In the layered representation coding,14,15 video data is decomposed into a set of overlapping layers. Each layer consists of:
an intensity map describing the intensity profile of a coherent motion region over many frames; an alpha map describing its
relationship with other layers; and a parametric motion map describing the motion of the region. The layered representation
has potentials for achieving greater compression because each layer exploits both the spatial and temporal coherences of
video data. In addition, the representation is similar to those used in computer graphics and so it provides a convenient way
to manipulate video data. Our goal in spatiotemporal segmentation is to identify the spatial and temporal coherences in
video data and derive the layered representation for the image sequence.

We describe a general framework for segmentation that identifies the spatiotemporal coherences of video data. In this
framework, coherent motion regions are identified iteratively by generating hypotheses of motion then classifying each
location of the image to one of the hypotheses. An implementation of the segmentation algorithm based on the affine motion
model is discussed in detail.

1



2 MOTION SEGMENTATION

A simple model for segmentation may consist of grouping pixels that have similar velocity. In scenes where objects
are undergoing simple translation, this model may provide a sufficient description. However, this model when applied on
general image sequences will result in a highly fragmented description. For example, when an object is rotating, each point
on the object exhibits a different velocity resulting a segmentation map that consists of many small regions. The problem
lies in the image model used in the segmentation. This model, although it requires a small encoding overhead, is insufficient
for describing typical image sequences. The ideal scene segmentation, however, requires 3-D object and shape estimation
which remains difficult and computationally intensive. A model less complicated than the 3-D model must be employed.

A reasonable solution can be found by extending the simple translation motion model to allow for linear change in motion
over spatial dimensions. This affine motion model consists of only six parameters and can describe motions commonly
encountered in video sequences. These include: translation, rotation, zoom, shear, and any linear combination of these.
Affine motion is defined by the equations:

Vx(x; y) = ax0 + axxx+ axyy (1)

Vy(x; y) = ay0 + ayxx+ ayyy (2)

where V x and V y are the x and y components of velocity, and the a0s are the parameters of the transformation. We use the
affine motion model in our decomposition of video data into the layered representation.

Image segmentation based on the affine motion model result in identifying piecewise linear motion regions. Affine
motions have been shown to provide adequate description of object motion while being easily computable.2,4,6 It can be
shown that motion of 3-D planar surfaces under orthographic projection induce affine motions, thus, affine motion regions
have a physical interpretation.

2.1 Multiple motion estimation

In many multiple motion estimation techniques, a recursive algorithm is used is to detect multiple motions and corre-
sponding regions between two frames. These algorithms assume that a single dominant motion can be estimated at each
iteration, thus, justifying the use of a global motion estimator that can determine only one motion for the entire image.
Upon determining the dominant motion, the first image is motion compensated by “warping” and compared with the second
image. The corresponding motion region consists of the locations where the errors are small. Recursively, this procedure
is applied to the remaining portions of the image to identify the different motion regions. However, when a scene consists
of many moving objects, estimation of a dominant global motion will inevitably incorporate motion from multiple objects
producing an intermediate motion estimate that will not have any reasonable corresponding motion region.

Our approach to multiple motion estimation avoids the dependency on a dominant motion by allowing for multiple
motion models to compete for region support at each iteration. In our motion segmentation framework, we initially estimate
the optic flow, which is a dense motion field describing the motion at each pixel. The optic flow allows for local estimation
of motion thereby reducing the problem of estimating a single motion with data from multiple motion regions. Given the
dense motion data, the problem of segmentation is reduced to determining a set of motion models that can best describe the
observed motion.

Our spatiotemporal segmentation is not simply a representation where data is partitioned into a set of non-overlapping
connected regions. Rather, similar motion regions are grouped together and represented by a single layer. Thus, even when
a single coherent motion surface is separated by an occluding foreground surface, these disconnected regions are represented
by a single global motion model.
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Figure 1: Block diagram of the motion segmentation algorithm.

2.2 Temporal coherence

Motion estimation provides the necessary information for locating corresponding regions in different frames. The new
positions for each region can be predicted given the previously estimated motion for that region. Motion models are estimated
within each of these predicted regions and an updated set of motion hypotheses derived for the image. Alternatively, the
motion models estimated from the previous segmentation can be used by the region classifier to directly determine the
corresponding coherent motion regions. Thus, segmentation based on motion conveniently provides a way to track coherent
motion regions.

In addition, when the analysis is initialized with the segmentation results from previous frame, computation is reduced
and robustness of estimation is increased.

3 IMPLEMENTATION

A block diagram of our segmentation algorithm is shown in figure 1. The general segmentation framework is a iterative
algorithm that consists of generating multiple model hypotheses and applying in a hypothesis testing framework to classify
the underlying motion data. Additional constraints on connectivity and size of regions are introduced to provide for
robustness to noise in the motion data. Our implementation of the multiple motion estimation algorithm is related to the
robust techniques presented by Darrell.4

Our segmentation algorithm begins by either accepting a pre-defined set of motion hypotheses or by generating a set of
hypotheses from the given motion data. When a set of motion models that correspond to the observed motion is given, the
coherent regions can be easily identified by the region classifier. The region classifier employs a classification algorithm
that allows multiple models to compete for support. Similarly, when the coherent motion regions are known, motion models
for each region are estimated and a segmentation is derived based on these models.

The task of segmentation remains difficult when both the motion models and the coherent motion regions are not known.
In this case, our framework uses a nonsupervised learning approach to determine the motion models. A sampled model set
is derived by calculating the motion model parameters over an initial set of regions. Region assignment follows producing
a new set of regions for model estimation. Iteratively, models and regions are updated. Processing continues until a few
number of points are re-assigned.
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3.1 Optic flow estimation

The local motion estimator consists of a multi-scale coarse-to-fine algorithm based on a gradient approach.1,8,11 For two
consecutive frames, the motion at each point in the image can be described by the optic flow equation:

It(x� Vx(x; y); y � Vy(x; y)) = It+1(x; y) (3)

where at time t + 1, each point (x; y) in the image It+1 has a corresponding point in the previous image It at location
(x � Vx(x; y); y � Vy(x; y)). Vx and Vy are the x and y displacements, respectively. However, this model is under
constrained having two unknowns,Vx and Vy, and only one equation. We solve this by estimating the linear least-squares
solution for motion within a local region, R, with the following minimization:

min
Vx; Vy

X
R

[It(x� Vx(x; y); y � Vy(x; y))� It+1(x; y)]
2 (4)

where upon linearizing and minimizing with respect to Vx and Vy, we obtain the following system of equations:
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In these equations, Ix, Iy, and It are the partial derivatives of the image intensity at position (x; y) with respect to x, y, and
t, respectively. The summation is taken over a small neighborhood around the point (x; y). We use a 5x5 pixel gaussian
summation window resulting in a weighted linear least squares solution of equation 4. The least squares solution implicitly
enforces spatial smoothness on the motion estimates.

Our multi-scale implementation allows for estimation of large motions. When analyzing scenes exhibiting transparent
phenomena, the motion estimation technique described by Shizawa and Mase12 may be suitable. Other more sophisticated
motion estimation techniques3,5 that deal with motion boundaries can be used. However, in most natural scenes, this simple
optic flow model provides a good starting point for our segmentation algorithm.

3.2 Motion hypotheses generation

The segmentation of the motion data begins by deriving a set of motion hypotheses for region classification. If a set
of motion models are known, then region assignment can follow directly to identify the corresponding regions. Typically
when processing the first pair of frames in the sequence, the motion models are not known, therefore it is necessary to use
some algorithm to generate these hypotheses. One approach is to generate a set of models that can describe all possible
motion that might be encountered. In our framework, we do not use such an initial hypothesis set because this would lead
to an overwhelmingly large set and make region classification both computationally expensive and unstable.

Instead, we determine a set of motion hypotheses that is likely to be observed in the image by sampling the motion data.
To sample the data, the region generator initially divides the image into an array of non-overlapping regions. The model
estimator calculates the model parameters within each of these regions. As a result, one motion hypothesis is generated for
each region.

Given the motion data, the affine parameters are estimated by a standard linear regression technique. The regression is
applied separately on each velocity component because the x affine parameters depend only on the x component of velocity
and the y parameters depend only on the y component of velocity. A simple way to represent the motion hypotheses is to
form a six dimensional vector in the affine parameter space. If we let aT

i
= [ax0i axxi axyi ay0i ayxi ayyi] be the ith

hypothesis vector in the six dimensional affine parameter space withaxi

T = [ax0i axxi axyi] and ayi
T = [ay0i ayxi ayyi]

corresponding to the x and y components , and �T = [1 x y] be the regressor, then the affine motion field equations 6 and
7 can be simply written as:

Vx(x; y) = �Taxi
(6)
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Vy(x; y) = �
T
ayi (7)

and a linear least squares solution for the affine motion parameters ai within a given region, Ri, is as follows:

[ayi axi
] = [

X
Ri

� �T ]�1
X
Ri

(�[Vy(x; y) Vx(x; y)]) (8)

The analysis regions should be large enough to allow for stable model estimation, especially when motion data is
corrupted by noise. However, when using large initial regions, model estimation may incorporate data from multiple motion
regions. We find, by experiment, that regions of dimensions 20 x 20 pixels result in good performance.

3.3 Model clustering

Often a set of hypotheses will contain models with similar parameter values. These similar hypotheses result from
regions exhibiting similar motion. The model merger combines these similar hypotheses to produce a single representative
hypothesis thereby reducing computation in the region assignment stage. In addition, pixels exhibiting similar motion will
be assigned to the same motion hypothesis, thus, producing a more stable representation of coherent motion regions.

The model merger employs a k-means clustering algorithm13 in the affine parameter space. The clustering strives at
describing the set of motion hypotheses with a small number of likely hypotheses. In the algorithm, a set of cluster centers
are initially selected from the set of hypothesis vectors, all of which are separated at least by a prescribed distance, D0, in
the parameter space. A scaled distance, Dm(a1; a2), is used in the parameter clustering in order to scale the distance of
the different components. The scale factor is chosen so that a unit distance along any component in the parameter space
corresponds to roughly a unit displacement at the boundaries of the image. Thus, we assume a unit displacement along any
component in parameter space is equally perceptible in the image space.

Dm(a1; a2) = [(a1 � a2)
TM (a1 � a2)]

1
2 (9)

M = diag(1 dim2 dim2 1 dim2 dim2) (10)

where dim is the dimensions of the image.

Iteratively, the hypotheses are assigned to the nearest center and the centroid of each cluster used as the new set of
centers. Two centers that are less than D0 distance from each other are merged. We find that a value of 0:5 < D0 < 1:0
provides a good measure. In the model clustering, outliers are rejected from the analysis. These are identified by their large
residual error �2

i
, which can be calculated as follows:

�2
i
=

1
Ni

X
x;y

(V(x; y) �Vai
(x; y))2 (11)

where N is the number of pixels in the analysis region. Hypotheses with large residuals do not provide a good description
of motion within the analysis region, and thus should be eliminated to provide better clustering performance. In addition,
number of members within a cluster indicates the likelihood of observing that motion model in the image.

3.4 Region assignment by hypothesis testing

The task of the region classifier is to determine the coherent motion regions corresponding to the motion hypotheses.
Each location is classified based on its motion as belonging to one of the motion hypotheses or none at all. We construct the
following cost/distortion function, G(i(x; y)):

G(i(x; y)) =
X
x;y

[V(x; y)�Vai
(x; y)]2 (12)
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(a) Motion field (b) K-means parameter clustering

Figure 2: (a) The motion field is locally approximated by models of the form y = p1x + p2 . (b) Parameter space
representation of the local models. K-means clustering in the parameter space produces a set of clusters where membership
indicates the likelihood of observing a motion described by the center of the cluster.

where i(x; y) indicates the model assignment at location (x; y), V(x; y) is the estimated local motion field, and Vai
(x; y)

is the affine motion field corresponding to the ith affine motion hypothesis.

From equation 12, we see thatG(i(x; y)) reaches a minimum value of 0 only when the affine parameters exactly describe
the motion within the region. However, this is often not the case when dealing with noisy motion data. Our segmentation
strives at minimizing the total cost given the motion hypotheses. This is achieved by minimizing the cost at each location
as follows:

i0(x; y) = arg min [V(x; y)�Vai
(x; y)]2 (13)

where i0(x; y) is the minimum costs assignment.

Any given location with a motion that cannot be easily described by any of the motion hypotheses remains unclassified.
The unclassified regions are collected and new regions created by the region generator to produce new hypotheses for further
iterations.

Hypothesis generation, model estimation, and model clustering is illustrated by a 1-D example in figure 2. A set of
points indicating the motion data is shown in figure 2(a). These points lie generally on two lines. A model of the form,
y = p1 x + p2, is estimated for each pair of neighboring points and are shown as lines connecting the points. When
these models are plotted in parameter space, clusters are formed where the parameter values correspond to the parameters
of the generating lines. Motion models are obtained from the centers of these clusters. Region assignment is illustrated
in figure 3. Three hypotheses are used and the resulting assignment indicated by the numbers. Note that by using global
models, disconnected regions that have similar motion are represented by a single model.

3.5 Complexity

In the iterative algorithm, before motion models are estimated from the segmentation, two disconnected regions that are
supported by the same model are split and treated separately. This is particularly important when the motion data is greatly
corrupted by noise. Under those circumstances a given hypotheses may support points where motion does not correspond
to coherent motion regions. As illustrated in figure 3, hypothesis H2 supports spurious points that may arise from motion
estimation such as motion smoothing. We avoid supporting these regions by following the region splitter with the region
filter. The filter module eliminates regions that are smaller than some prescribed size.
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Figure 3: Region assignment with three hypotheses, H1, H2, and H3. Models are of the form y = p1x + p2. Points are
assigned to the model that best describes the pixel motion.

In the region splitting process some non-connected regions that do belong to the same motion model may be split into
multiple regions. Consequently, model merging will produce a single model that will support these similar motion regions
because model estimation in each of these regions will produce similar parameter values.

The analysis maintains temporal coherence and stability of the segmentation by using the current motion models to
classify the regions for next pair of frames. Since motion changes slowly from frame to frame, the motions and corresponding
regions will be similar, therefore segmentation analysis will require fewer iterations for convergence.

After the motion segmentation on the entire sequence is completed, affine motion regions will be identified along with
the correspondences regions. Typically, motion segmentation analysis on the subsequent frames requires only two iterations
for stability. Thus, most of the computational complexity is in the initial segmentation, which is required only once per
sequence.

3.6 Segmentation refinement

In the region classification, there may still remain a set of unclassified points. These usually arise from motion estimation
obtained with the optic flow model. At motion boundaries, the simple optic flow model described in equation 3 fails because
many points will have no correspondences between a pair of images. Consequently, the least squares motion estimates
described by equation 4 is inaccurate near the motion boundaries.

However in many cases, an intensity-based classification algorithm can assign these regions. In this classification, a
small region of the first image is “warped” according to the estimated motion models and compared with the second image.
The center of the region is assigned to the model that produces the lowest mean squared error distortion for that region. This
is describe by the following equation:

min
i

X
x;y

[It(x� Vx;i(x; y); y � Vy;i(x; y)) � It+1(x; y)]
2 (14)

where Vx;i(x; y) and Vy;i(x; y) are the x and y motion fields, respectively, of the i motion model. When every point in the
image is processed in this manner, we obtain a segmentation that minimizes the overall image distortions while using only
a few motion models. Wherever the optic flow is indicative of the actual image motion, the classification will be identical.
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4 EXPERIMENTAL RESULT

We present segmentation results on 30 frames of the MPEG flower garden sequence. The image dimensions are 180 x 120
pixels. Figure 4(a) shows frame 1 of the original sequence. Results of the optic flow estimator is shown in figure 4(b). Note
that optic flow results are not indicative of image motion at the tree and background motion boundaries.

Figure 5 shows a sample of the segmentation output after different number of iterations. In this example, we used
an initial segmentation map consisting of an array of 20 x 20 pixel blocks shown in figure 5(a). Initial model estimation
produced 54 motion hypotheses of which ten model with the smallest residual error, �2

i
as described in equation 11, were

selected as likely motion hypotheses.

Figure 5(b) shows the results of the region classifier after the first assignment. The different regions are depicted by the
different gray levels. Regions that cannot be explained by any model within a tolerance of 1 pixel motion are unassigned.
These are depicted by the darkest gray level. Note that after the first iteration, motion regions that roughly correspond to
planar surfaces in the scene have been found. After the fifth iteration, figure 5(d), many of the smaller regions have merged.
After the tenth iteration, figure 5(e), the two flowerbed regions that were split by region splitter have remained distinct.
These are later merged into a single motion region as shown in the results after fifteen iterations, figure 5(f).

Figure 6 shows a sample of segmentation for different frames of the sequences. The motion models estimated for the
previous frame were used as initial motion hypotheses for the current segmentation analysis. Only two iterations were
performed for each subsequent frame. Note that temporal stability is maintained and each of the coherent motion regions
are tracked over time.

The segmentation based on minimum motion distortion of equation 13 are similar to segmentation based on minimum
intensity distortion of equation 14. Differences can be seen near object boundaries, especially near the boundaries of the
tree and the background where a large motion discontinuity exists.

Figure 8(a) demonstrates a convenient way to represent video data. In this image, intensity data corresponding to a
location x, y, and z are plotted in three dimensional coordinates resulting in a spatiotemporal rectangular volume. This
volume is cut in the x and y directions to reveal the data within the volume. Note that moving objects, such as the tree,
paint out oriented features in this volume. In figure 8(b), we show the spatio-temporal segmentation of the video data. In
this figure the volume is partitioned into sub-volumes depicted by the different gray levels.

Given this spatial and temporal segmentation, we produce the intensity maps of the layered representation for each of
the motion regions, three of which are shown in figure 9. These images are obtained by collecting data over time to derive
a single image for each coherent motion region. Note that regions occluded by the tree in the flowerbed and house regions
are recovered in the temporal processing. Thus, the video data is spatially and temporally partitioned into coherent regions
as in figure 8(b), and furthermore coherent motion regions are decomposed into layers and efficiently represented.

Any frame of the original sequence can be synthesized from the layer images in figure 9. One frame of the synthesized
images is shown in figure 10(a). In addition to providing compression video data, the layers also provide a flexible
representation for image manipulation. Figure 10(b) shows one image synthesized without the tree layer. The background
image is recovered correctly. Layer analysis also facilitate data manipulation in other applications involving frame rate
conversion and data format conversion. Images can be generated at any frame rate because the layer motion describes the
image of the layer at any instant in time, and these layers can be composited according to their occlusion relationships.
Likewise, video in either line interlaced or progressively scanned format can be represented by layers and subsequently used
to synthesize data in either format.
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5 CONCLUSIONS

We present a general framework for spatiotemporal segmentation of video data. This framework is based on a
nonsupervised learning algorithm that iteratively generates hypotheses of motion and applies them in a classification
algorithm that allows for competition among different motion hypotheses. The classification produces multiple distinct
motion regions at each iteration. We introduce additional constraints in the algorithm to produce a stable segmentation.
Temporal segmentation is achieved by tracking the motion regions from frame to frame. We demonstrate this algorithm
with an implementation that uses the affine motion model to segment the motion data.

The segmentation information provides the necessary information to derive the layered representation whereby the video
data is reduce to a few layers, each exploiting the spatial and temporal coherences of the data. This compact representation
facilitates manipulation of video data. We show examples of image coding, video editing and background recovery on a
real video sequence.
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(a) Frame 1 (b) Estimated motion

Figure 4: Frame 1 of MPEG flower garden sequence and estimated optic flow between Frame 1 and 2.

(a) Initial,N = 0 (b) N = 1 (c) N = 2

(d) N = 5 (e) N = 10 (f) N = 15

Figure 5: Results of initial segmentation after different iterations, N . Initial segmentation consists of 54 square regions
each 20x20 pixels. Ten different gray levels are used to represent different segments. Segmentation map is the same after
15 iterations.
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(a) T = 0 (b) T = 15 (c) T = 29

Figure 6: Results of segmentation based on minimum motion distortion at different times, T .

(a) T = 0 (b) T = 15 (c) T = 29

Figure 7: Results of segmentation based on minimum intensity distortion at different times, T .

(a) Video data (b) Data segmentation

Figure 8: (a) Spatio-temporal volume representation of video data. (b) Spatio-temporal segmentation of video data.
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Figure 9: Layered representation of the video data is shown with the three primary intensity maps corresponding to the tree,
flowerbed, and house along with their depth ordering.

  

(a) (b)

Figure 10: (a) Frame 1 reconstructed from the layered representation. (b) Frame 1 reconstructed from layers without the
tree. A sequence of each of these can be synthesize from the layer representation.
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