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   Introduction   

When one looks at a two-dimensional scene of
moving objects, one can usually assign a
velocity to each point in that scene with
little effort. This suggests that some early
visual processes are able to generate a two-
dimensional velocity map using fast parallel
computations. But it is not obvious how this
should be done, and we are currently trying to
understand how the human visual system does it.

If moving patterns were merely one-dimensional,
the visual system's task would be easier. One
dimensional motion can be signaled by cells
such as those described by Barlow and Hill in
rabbit (1963); these units compare responses of
two adjacent regions on the retina at two
successive moments of time. Combinations of
such cells can signal the one-dimensional
velocity of a moving edge, bar, or other
contour.

But the retinal image is two-dimensional, and
the problem becomes more complex than it first
seems. Figure l illustrates  a well-known
visual phenomenon called the "barberpole
effect," which is based on the inherent
ambiguity of the motion of extended contours.

In fig. 1(a), the grating seems to move to the
right when viewed through the horizontal
window, even though the "true" motion of the
physical grating is diagonally down and to the
right. When a vertical window is used, as in
fig. 1(b), the same physical motion leads to a
percept of a downward motion.

The fact that one physical motion can be seen
in different ways is to be expected because the
observed motion of a stimulus like a grating
does not, in and of itself, define the physical
motion that produced it. The point is made

clear in figure 2, where three different
physical motions give rise to an identical
pattern of stimulation when viewed through the
window. In this case, all three patterns will
be seen as moving down and to the right.

The ambiguity is not, of course, limited to the
motion of gratings. Any extended pattern, such
as an edge or a straight  line, will offer the
same problem. Consider the two moving diamonds
shown in fig. 3. In fig. 3(a), the diamond
moves down, yet a cell that "looks" at a local
patch on the lower right edge will signal a
contour moving down and to the right. In fig.
3(b), the diamond moves to the right, and the
same cell will again signal contour motion down
and to the right. So it is impossible to tell
which way the diamond is moving by merely
looking at one of its edges.

Marr and Ullman (1981) call this the "aperture
problem," and have discussed how one can
combine information from cells that signal only
direction in order to constrain the underlying
motion to lie within a limited range of
directions. Fennema and Thompson (1979) showed
that by taking advantage of local information
about both the direction and speed of moving
contours, one could obtain a full solution for
the object's motion using a Hough transform; we
take a similar approach in the work we will
discuss. (Note that this solution is only
correct  for the case of pure translation of a
two dimensional pattern. For more complex
transformations, such as rotations or
deformations, more complex strategies are
required (Horn and Schunck, 1981; Hildreth and
Ullman, 1982)). An early discussion of the
problem can be found in Wohlgemuth’s  (l9ll)
classic work on the motion aftereffect; Hans
Wallach (1935, 1976) did some very interesting
experiments on its perceptual implications. It
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continues to interest both physiologists and
psychologists today (Henry et al, 1974;
Burt and Sperling, 1981; Adelson and Movshon,
1982).

There is both physiological and
psychophysical evidence that the first
stages of visual processing analyze the
retinal image into a patchwork of localized
one-dimensional components, which may
variously be conceived as representing bars,
edges, local Fourier components, Gabor
functions, or what have you. In any event,
such an analysis brings the aperture problem
in with it from the very start. The visual
system must go from the local motion of one-
dimensional components to the percept of a
single coherently moving pattern. In our
discussion we will use the term component
motion to refer to the motion of extended one-
dimensional patterns such as lines, edges, and
gratings; and we will use the term "pattern
motion" to refer to the unambiguous two-
dimensional motion of  more complex patterns
such as textures and objects.

   Resolving Ambiguity   

While it is true that a single component motion
is ambiguous, the ambiguity is limited to a
single degree of freedom. Consider once again
the motion of the lower right edge of a
rightward-moving diamond; the edge is magnified
in fig. 4. The set of object motions consistent
with the observed edge-motion are indicated by
the arrows fanning out from the edge. This
family of velocities may be depicted as a line
in "velocity space," where any velocity is
represented as a vector from the origin whose
length is proportional to speed and whose angle
corresponds to direction of motion. The family
of motions consistent with the edge maps to a
straight line in velocity space.

Figure 5 shows how a pair of such constraints
can be used to determine the true motion of the
diamond. Each of the edges in fig. 5(a) is
associated with its own family of motions in
velocity space, as shown by the lines in
fig. 5(b). The lines intersect in a single
point, and that point represents the object's
motion.

The same analysis may be applied to
combinations of gratings, as shown in fig. 6.
Two gratings move behind a circular window. One
moves up and to the right, the other moves down
and to the right. When they are added together
the resulting plaid moves rightward, as an
apparently rigid pattern, in accord with the
requirements of the velocity space construc-
tion. The appearance of this pattern is
interesting, because one does not see either of
the component grating motions in the combined

pattern. Rather, the plaid seem to move
rightward as a single coherent surface.

At first glance, it may appear that we have
described a very complex method for doing
vector addition. But the velocity space
solution is generally different than one would
get from a vector sum, a point that is
exemplified in  figure 7. Here we combine two
gratings, each of which moves down and to the
right, each with its own speed and direction.
On a vector sum model, the combined pattern
should move down and to the right as well,
while on a velocity space model it should move
up and to the right. And the stimulus does
look like it is moving up and to the right,
in accord with the velocity space require-
ments.

Crossed gratings do not always cohere into a
single moving pattern. Figure 8 shows a case in
which they cannot do so because there are three
gratings which generate mutually incompatible
constraints. The three gratings here set up
three constraint lines; any two gratings can
cohere, but then the third one cannot be
included in the same pattern motion. When one
views this stimulus, one sees a multistable
display, in which any two of the gratings can
be seen as a coherent pair moving in one
direction, while the third grating (the odd man
out) floats off by itself in the opposite
direction. There are three such percepts, each
corresponding to a particular intersection in
velocity space. One can select out a particular
percept by tracking the desired pattern motion
with one's eyes; the tracking strongly biases
the perception toward the tracked coherent
pattern rather then the other two
possibilities.

   Determinants of Coherence   

Even with just two gratings, coherence does not
always occur. In some circumstances a pair of
crossed gratings, each moving in a different
direction, will be seen as just that -- a pair
of crossed gratings, each moving in a different
direction, each sliding across the other as if
the other wasn't there. In such cases the
visual system has elected not to combine the
two component motions into a single pattern
motion. By studying the conditions under which
coherence does and does not occur we may learn
something about the mechanisms that underly the
perception of pattern motion.

One of the most striking determinants of
coherence is the spatial frequency of the
crossed gratings (Adelson and Movshon, 1982).
In many of our experiments we use sine-wave
gratings, i.e., gratings whose luminance
profiles are sinusoidal (such stimuli have
become popular in vision research because many
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early visual mechanisms are spatial frequency
tuned, so that by using a sine-wave stimulus
one can preferentially stimulate a relatively
small subset of the mechanisms under study). We
have found that two gratings will have a strong
tendency to cohere if they are of the same
spatial frequency, but have a rather weak
tendency to cohere if their spatial frequencies
differ by more than an octave. Thus, for
example, if a 3 cycle/deg grating of one orien-
tation is summed with a 9 cycle/deg grating of
a different orientation, chances are that
they will be seen as sliding over each other
rather than moving as a single coherent plaid.

The contrasts of the two gratings are also
important in determining coherence. If the
first grating is of high contrast while the
second one is of low contrast, then coherence
may break down. Only when the contrast of the
second grating is increased will the coherent
percept return.

The contrast dependence can be used to derive a
tuning curve for the frequency dependence, in
the following way. Start with one moving
grating of fixed spatial frequency and
contrast. Add to it a second moving grating (of
a different orientation), of a different
spatial frequency. If the second grating’s
spatial frequency is substantially different
from that of the first grating, then its
contrast will have to be quite high in order
for the two gratings to cohere. But if the
second grating has a spatial frequency that is
similar or identical to that of the first, then
it will cohere with the first even when its
contrast is quite low. By measuring the minimum
contrast at which coherence occurs, one can
trace out a tuning curve for this effect.

Figure 9 shows the results of two such
experiments on one subject. The closed circles
show the first experiment, in which the
standard grating was 2.2 cycle/ deg, moving at
3 deg/sec, and had a contrast of 0.3. The
second grating had an orientation that differed
from that of the first grating by 135 degrees;
the second grating’s spatial frequency was
varied. The filled leaf circles indicate the
minimum contrast the second grating needed in
order to cohere with the first, at various
spatial frequencies. The contrast was
noticeably elevated when the two frequencies
differed by an octave, and became quite high
when they differed by two octaves. The tendency
to cohere was greatest (and the needed contrast
was lowest) when the second grating's spatial
frequency was matched to that of the first
grating.

The open circles show the results of a similar
experiment in which the standard grating had a
spatial frequency of 1.2 cycle/deg. The results
are much the same, and once again the tuning

curve is centered on the spatial frequency of
the standard grating. So these experiments
indicate that the visual mechanisms underlying
coherent motion perception are spatial
frequency tuned, like many other aspects of
early visual processing.

   Global Versus Local Analyses   

The velocity space construction is quite useful
in understanding and predicting pattern motion
phenomena, but this utility does not
demonstrate that the human visual system is
actually performing the rather global
computations suggested in the velocity space
diagrams. There are alternative approaches that
will lead to the unambiguous perception of
moving patterns, such as approaches based on
"landmarks," or localized features in the
moving patterns. In the case of the moving
diamond, a corner could serve as a landmark,
and by following its position over time one
could correctly determine the motion of the
diamond. Similarly, in the case of crossed
sine-wave gratings, the peaks and troughs
corresponding to the intersections of the light
and dark grating bars could serve as landmarks
by which the coherent motion direction could be
inferred. The motion derived by these
approaches is, of course, identical to that
derived from velocity space, since in either
case there exists a single pattern motion that
is consistent with all the visual information
in the display.

But there is an interesting display that we
call the "split herringbone," for which a
landmark model makes a different prediction
than does a more global model based in velocity
space. The display is shown in fig. 10(a); it
consists of alternating columns of line
segments that tilt left or right on the odd and
even columns. The odd (right-tilting) columns
move down, while the even (left-tilting)
columns move up.

The most obvious landmarks in this display are
the endpoints of the line segments. If they
determine the motion percept, then one should
see the split herringbone for what it is: a set
of interleaved columns moving continuously up
or down.

If, on the other hand, a more global process is
at work, then it is possible that one will see
an illusion of rightward motion, as illustrated
in fig. 10(b). The odd columns produce one
constraint line in velocity space, and the even
ones produce another. The intersection
corresponds to pure rightward motion. So this
global approach predicts an illusion of motion
to the right.

When one actually sets up the display, one
finds that either of the two percepts is
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possible. The model based on local landmarks
works when the display is of high contrast, is
sharp, and is centrally fixated; in these
conditions one sees the "correct" percept of
vertically moving columns. On the other hand,
when the display is of low contrast, or is
blurred with a diffusion screen, or is viewed
peripherally, then one can see the illusion of
rightward motion predicted by the global model
based in velocity space.

When the illusion does occur it is quite
striking. The herringbone pattern seems to be
moving continuously rightward, and yet it never
gets anywhere, since the vertical "creases"
where the columns abut are fixed in position.

These observations suggest that both kinds of
models -- the local landmark-based models, and
the more global models based in velocity space
-- can be useful in understanding the way we
perceive moving patterns.
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Fig. 1: The barberpole effect. The same physi-
cal motion of the grating behind the window can
be seen as corresponding to different motions
within the window.

Fig. 2: The ambiguity of motion for extended
contours. All three physical motions give rise
to identical motion as viewed through the
window.

Fig. 3: A cell looking at a local edge of a
diamond cannot determine which way the diamond
is moving.
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Fig. 4:  Left: The set of possible object
motions that could give rise to an observed
motion of the edge. Right: Mapping the family
of possible motions into velocity space.

Fig. 5:  An exact solution for the diamond’s
motion can be determined by the intersection of
two constraint lines from two edges.

Fig. 6:  The velocity space solution applied to
the case of two moving gratings which are
summed to form a moving plaid. The plaid moves
to the right.

Fig. 7:  An example where the velocity space
solution is quite different from the solution
based on a vector sum. Two gratings that move
down and to the right give a pattern motion
that is up and to the right.

Fig. 8:  A tristable display, composed of the
sum of three moving gratings. There are three
velocity space solutions, each of which is
consistent with only two of the three grating
motions. There are three possible percepts
corresponding to these solutions.

Fig. 9:  The mechanisms responsible for
coherent pattern perception are tuned for
spatial frequency. Shown here are two tuning
curves, in which contrast for coherence is
measured as a function of the relative spatial
frequencies of the two gratings. See text for
details.
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Fig. 10:  The split herringbone illusion.
Alternating columns of tilting line segments
move up and down. Under certain conditions one
has the illusion that the herringbone pattern
is moving continuously to the right. See text.
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