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     Abstract   :

We describe a set of pyramid transforms that decompose an
image into a set of basis functions that are (a) spatial-frequency
tuned, (b) orientation tuned, (c) spatially localized, and  (d)
self-similar. For computational reasons the set is also (e)
orthogonal and lends itself to (f) rapid computation. The systems
are derived from concepts in matrix algebra, but are      
closely connected to decompositions based on quadrature
mirror filters. Our computations take place hierarchically,
leading to a pyramid representation in which all of the basis
functions have the same basic shape, and appear at many
scales. By placing the high-pass and low-pass kernels on
staggered grids, we can derive odd-tap QMF kernels that are
quite compact. We have developed pyramids using separable,
quincunx, and hexagonal kernels. Image data compression with
the pyramids gives excellent results, both in terms of MSE and
visual appearance. A non-orthogonal variant allows good
performance with 3-tap basis kernels and the appropriate
inverse sampling kernels.

   Introduction:   

A linear image transform expresses an image as a weighted
sum of basis functions. The choice of transform (i.e. the choice
of basis set) can be motivated by many factors. Much recent
work in image coding has involved basis functions that are
localized in both space and spatial frequency. Such transforms
appear to be quite useful for various kinds of image analysis,
because they give information about intensity changes over
different scales, and yet retain information about where the
events are occuring. There is also good evidence that the
human visual system performs a similar image decomposition
in its early processing.

    Localization       in       space        and       spatial       frequency:   

The simplest way of achieving localization in both space and
spatial frequency is to compute a discrete Fourier transform or
a discrete cosine transform in a small block. But this introduces
arbitrary block boundaries that violate the continuity of the
image. Moreover the frequency localization of the basis
functions is poor (when considered in the context of the  
image as a whole) due to the hard-edged windows defining the
block.

Gabor (1946), working in the time domain, showed that
functions produced as the products of complex sinusoids and
Gaussian windows had optimal joint time-frequency
localization, and he developed a transform using such
functions as a basis set (cf. Daugman, 1985). At each position
a set of basis functions analyzes a Gaussian-weighted patch
into frequency components. The process is repeated for each
patch. The Gabor functions do not form an orthogonal basis
set, but they can form a complete representation.

    Self-similarity:   

A second theme in much recent work in image processing is
"scaling," or "self-similarity" -- the notion that the basis
functions should all have essentially the same shape but should
be scaled versions of each other. The fundamental argument is
that images contain information at all scales, and so it makes
sense to capture this information in a uniform way. Scale
invariance is violated by typical blocked or "short space"
transforms. Block transforms, whether they use hard blocks (as
in a blocked DCT) or soft ones (as in a Gabor transform)
impose an arbitrary scale on the image analysis because the
block is chosen to be some particular size. The problem of
arbibary scale can be avoided in self-similar transforms, in
which the basis functions come in many sizes.

Burt and Adelson (1983) coded images using the Gaussian and
Laplacian pyramids. The basis functions are low-pass kernels
repeated at a series of positions, and appear at scales varying
by factors of two. The sampling functions are band-pass
kernels, which are placed at corresponding positions and
scales. The pyramid transform gives exact reconstruction, but
the basis set is not orthogonal, and number of transform coeffi-
cients exceeds the number of original pixels by a factor of 4/3.

Watson (1987) has developed a an oriented pyramid whose
basis functions resemble Gabor functions and attain a spatial
frequency and orientation tuning similar to that interred for
channels in the human visual system. Again, the non-
orthogonal basis set is overcomplete by 4/3. The reconstruction
is nearly exact.

Our recent efforts have been to develop pyramids that use
orthogonal basis functions (and therefore have the same
number of transform coefficients as pixels), that incorporate
orientation tuning, and that have good localization in space and
spatial frequency. Such transforms should be useful for a
variety of image processing tasks. The fundamental concepts
can be illustrated by considering the Haar transform.

    The         Haar       transform:   

The Haar transform is the simplest self-similar orthonormal
image transform. It is easy to understand and simple to
compute. Its poor frequency tuning limits its utility in image
processing; nonetheless the Haar transform serves as a useful
tutorial device for much of what is to follow. It is special case
of a QMF pyramid, as will become clear.

Figure 1 shows the construction of a Haar basis set for an
image of 8 pixels. The original basis set (a) consists of 8
impulses, one at each position; these are split (b) into two
classes of basis function (high-pass and low-pass), each
appealing at 4 positions. The low-pass is further subdivided (c)
into  two more  basis  classes,  each appearing at  two positions;
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and finally these are transformed into one low frequency basis
function and one DC basis function. The resulting basis
functions are all of the same shape (save the DC term), come
in different scales, and are replicated on grids with a spacing
proportional to their scale.

A two-dimensional Haar transform is readily computed by
combining the 1-D basis transforms separably. The resulting 2-
D basis functions are shown in figure 2(a). This is the 2-D
formulation seen in textbooks unfortunately, it violates the
original spirit of self-similarity. The simple application of
separability leads to basis functions of widely varying shapes
some some squarish and some long and thin.

A more attractive 2-D basis set is the one shown in figure 2(b)
which was produced by separably combining the 1-D
primitives (fig. l(b)) to form a set of four 2-D primitives. These
were then applied recursively, subdividing only the low
frequency basis functions from one stage to the next. Since the
low-pass basis sets are always subdivided, the final pyramid
basis set is composed of only three basic kernel shapes, which
one may describe as taking vertical differences, horizontal
differences, and diagonal differences.

Although the Haar basis functions have poor frequency
selectivity, one can offer an idealized frequency-domain inter-
pretation of the construction of the basis set shown in fig. 2(b);
the interpretation is shown in figure 3. Each step of the process
breaks the original band into four subbands: one tuned for low
frequency, one tuned for vertical high-frequency, one tuned
for horizontal high-frequency, and one tuned for both
orientations of diagonal high-frequency.

Figure 1. Haar basis functions can be constructed in a series of steps
At each step the low-frequency basis set is split into two basis sets,
one of high frequency and one of low frequency.

    Fundamental        concepts:   

To derive better transforms let us review some basic ideas and
notation. For simplicity consider a 1-D discrete image e[n],
where n is the pixel index. An image transform expresses  
e[n] as a sum of basis functions fi[n] weighted by the
coefficients pi:

e[n] = ∑ipifi[n]

The coefficients pi can be derived by taking the inner product
of the image with a set of sampling functions gi:

pi = ∑ngi[n]e[n]

This may be expressed in matrix notation as follows: Let the
signal be a column vector e. Define the basis matrix F to be
composed of the columns fi:

Then we require that

e = Fp

where p is the column vector of coefficients. These
coefficients are found by multiplying the image with the
transpose of the sampling matrix G, where G is composed of
the columns gi. Thus,

p = GTe.

Then

e = FGTe

so that G must be the transpose of the inverse of F, i.e.

G = (F-1)T

Note that in the special case of an orthonormal transform the
sampling functions are identical to the basis functions G = F.
But in general this need not be the case.

We are particularly interested in the situation where the basis
functions can be partitioned into a few classes, where the
functions within a given class are shifted versions of each
other. That is, we are interested in basis matrices of the form:

which lead to corresponding sampling matrices of the form:

An alternate description of this sort of transform is shown in
the diagram of figure 4. The image is considered as a
sequence e[n]; the kernels ga, gb,… are convolved with the
image; downsampling by factors of ka, kb,... leads to the
subimages Pa[i], Pb[i],… . These subimages form the transform
representation. For reconstruction the subimages are
upsampled and convolved with the basis kernels fa, fb, ...
leading to the expanded subimages qa[n], qb[n],… . These are
summed to retrieve the original image e[n].
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Figure 2: (a) When the 1-D Haar transform is applied separably, the
resulting basis set contains kernels of many shapes, some long and
thin. (b) A separable Haar pyramid can be constructed by recursively
subdividing the 2-D low-frequency information at each step. In this
case there are only 3 shapes of kernels, and they are repeated at
various positions and various scales.

Figure 3: Frequency domain interpretation of separable pyramid
construction. At each step the low-pass information is divided into 4
images: low-pass, horizontal, vertical, and diagonal.

Figure 4: A signal processing diagram, corresponding to the
application of a transform built of a small number of kernel types that
are repeated and translated.
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    Band-splitting       transforms:   

One particular example is the case of band-splitting
transforms, where there are two classes of kernel: high-pass
and low-pass. If there are n pixels in the starting image there
will be n/2 basis functions in each class.

The Haar transform is built recursively from a band-splitting
transform. Such transforms can be applied recursively to build
a pyramid. Most of the transforms we have explored are of this
type.

Generally, band-splitting transforms are built from one
primitive kernel. The low-pass basis set is achieved by
translating this kernel by steps of two pixels. The high-pass
kernel is derived from the low-pass kernel by multiplication
with the modulating sequence:

s[n]= -1n

The Haar basis functions are compact in space but do a poor
job of separating the high and low frequency bands. Sinc
functions ((sin πx)/πx) offer the opposite extreme: they split the
band sharply in frequency, but they are poorly localized in
space. One can implement a self-similar sinc transform by
successive subdivision of a discrete Fourier transform.
Unfortunately the resulting basis functions, which are sinc
functions modulated by cosinusoids, produce such poorly
damped ringing that they are of little value for image analysis
or image data compression.

     Quadrature         mirror             filters.   

Quadrature mirror filters were introduced by Estaban and
Galand (1977) as a method of splitting a 1-D signal into sub-
bands, efficiently decimating the subband signals, and
achieving alias-free reconstructisn of the original signal. One
can show that the QMF requirements, as normally applied, are
equivalent to the requirement that a band-splitting transform
have an orthogonal transformation matrix. The QMF basis
functions can offer good localization in both space and spatial
frequency, and may be cascaded to form a self-similar ortho-
normal basis set. Moreover they can be tailored for efficient
computation, and tuned for orientation as well as frequency.

Vetterli (1984), and Woods and O’Neil [1986] have extended
QMP techniques to two dimensional signals. Pyramid versions
of QMF decompositions have been applied to image coding by
Gharavi and Tabatabai (1987) and Tran et al (1987).

Other workers outside the mainstream of digital signal proces-
sing have arrived independently at related formulations. Mallat
(1987), working in the context of machine vision, has derived
similar pyramids based an the wavelet theory of Meyer (1986,
1987) and other mathematicians working in France. In our own
laboratory, orthogonal pyramids have been developed from a
rather different point of view, originally in an effort to emulate
some of the properties of the human visual system.

Because of our interests, we have approached the problem
from the standpoint of orthonormal basis sets and matrix oper-
ations, rather than the standpoint of digital signal processing.
This has led to a notation that is rather different from the DSP
approach, but the results map readily into DSP terms.

     Odd-tap        kernels.   

Almost all work on QMF representations to date has been
based on low-pass kernels that have an even number of taps.
This leads to high-pass kernels with odd symmetry. In general
these kernels must be rather large (12 taps or more) in order to
give satisfactory performance.

We have found that odd-tap kernels (which lead to even
symmetric high-pass kernels) can be far more compact and
still give good performance. These kernels have largely been
overlooked, perhaps because they require a non-obvious
manipulation: the high- and low-pass kernels must be staggered
with respect to each other by one pixel. (In signal processing
terms, the high-pass decimation must be preceded by a one-
sample delay.)

Figure 5 illustrates the basis functions for a 5-tap QMF
transform on an image of size 16. The low-pass functions,
shown in the left column, are centered on the even-num-
bered pixel positions; the high-pass functions, shown in the
right column, are centered on the odd-numbered pixel
positions.

The illustrated case uses wraparound module 16, thus treating
the image as periodic. In actual image coding it is preferable to
use reflection at the edges, which leads to a somewhat more
complex basis set.

Within an image of size N, odd-tap kernels cannot offer a
perfectly orthogonal basis set unless they have at least (N+4)/2
taps. However they can approach orthogonality even with a
rather small number of taps. For example, the mean squared
reconstruction error for the Lena image is MSE = 0.103 (for a
grey-level range of 0-255) when a 5-tap kernel is used in a
one-level pyramid. By increasing the kernel size to 7, the MSE
can be reduced to as little as .00009. However, the spatial
shape and rather broad frequency tuning of the 5- and 7-tap
kernels limit their value for image coding applications. For
image coding we prefer to use 9-tap kernels, which are       
still quite compact. The 9-tap kernel with the sharpest tuning
has MSE = 0.0044 for the Lena image. The error can be
reduced at the expense of poorer frequency tuning; but for
image processing applications this error is insignificant in any
case.

The tap values for the 5-tap, 7-tap and 9-tap kernels we have
used are shown in table 1. For an m-tap kernel, the values
were derived by replicating the kernels within an image of size
m+1 (with wraparound mod m+l), and imposing a set of
constraints. For the 5- and 7-tap kernels the two constraints
were: (1) orthonormality, and (2) zero DC gain for the high-
pass kernel. This leads to a set of equations that can be readily
solved to give unique  solutions.  In the case of the 9-tap kernel

Figure 5: A 5-tap QMF basis set for a 16-pixel image. The basis set is
approximately orthoganal; better orthogonaly (and thus more accurate
reconstruction) is possible with more taps.
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there is an extra degree of freedom; we imposed the added
constraint that the Founer transform should have maximal slope
through the π/2 point.

When the QMF kernels are cascaded hierarchically to create
a multiscale pyramid, the equivalent kernel at each pyramid
level grows in scale by factors of two. Figure 6 shows the 9-tap
low-pass and high-pass kernels at various levels of the
pyramid.

Figure 6: Left: the series of low-pass 1-D kernels derived recursively
from a g-tap QMF kernel. Right: the series of high-pass kernels
derived in the same way.

    Two-dimensional         QMF        pyramids   

    Separable        pyramids:    The most straightforward way to generate
2-D QMF transforms is to apply two 1-D transforms separably
(as was illustrated above with the Haar transform). This leads
to a decomposition of the form shown in figure 7(a): at a given
level, the image is decomposed into a low-pass subimage, a
vertical subimage, a horizontal subimage, and a diagonal
subimage. Also shown is the decimation pattern, which cuts the
sampling density by a factor of 4. Thus one ends with 4
subimages, each sampled at l/4 the the density of the original
image. The fact that the number of transform samples equals
the number of image transforms follows immediately from the
use of an orthogonal transform.

In the case of odd-tap kernels, there will be four such
decimation grids, each offset to a different position; the
interleaving of the four grids is shown in the inset of fig. 7(a)
labeled "decimation pattern." For even-tap kernels, the four
decimation grids coincide. Note that the diagonal subimage
contains high frequencies in the corners of the frequency
spectrum, corresponding to diagonal tilt in both directions.

The 2-D frequency responses of the 9-tap kernels are shown
in figure 8.

     Quincunx           pyramids:    Non-separable, non-oriented QMF
pyramids can be made by successively dividing the spectrum
into  nested  diamonds  and  squares,  as  shown in  figure 9.  At

Figure 7: Three ways of building 2-D pyramids. (a) The frequency
decomposition resulting from separable application of 1-D kernels.
The decimation pattern is shown for the case of odd-tap kernels; in
the case of even-tap kernels all four kernel types are applied on the
same lattice. (b) The frequency decomposition resulting from
application of quincunx kernels. (c) The frequency decomposition
resulting from the application of hexagonal kernels.

each stage the linear scale of the kernel increases by √2. This
transform requires successive decimations on a quincunx grid
(cf. Vetterli, 1984), as shown in fig. 7(b). With quincunx deci-
mation the number of samples in 2-D is cut by l/2 at each stage.

A quincunx QMF kernel is given in table 2. This kernel
although not optimally tuned, serves to illustrate that such
kernels ean be made fairly compact. It occupies a diamond
within a 7x7 square; 20 of the 49 taps are zero, and the kernel
is highly symmetrical, so computations are not unreasonably
expensive. The 2-D frequency response is shown in figure 10.

     Hexagonal        pyramids:    Perhaps the most intriguing pyramids are
those that can be built on a hexagonally sampled image using
hexagonally symmetric kernels. As illustrated in figure 7(c), it
becomes possible to divide the spectrum into three oriented
subimages and one low-pass subimage. Again, this process can
be applied recursively to build a pyramid. The decimation
pattern reduces the sampling density by a factor of 4 at each
stage.
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The hex pyramid has the unique property that all of its high-
pass kernels are oriented and all have the same shape. (Recall
that with the separable pyramid, the horizontal and vertical
kernels are the same but the diagonal one is different.).        
An example of a reasonably compact hex kernel is shown in
table 3.

Figure 8: The two-dimensional discrete-space Fourier transforms for
the 9-tap QMF kernels.

Figure 9: The nesting pattern of the frequency spectra for a quincunx
pyramid.

Figure 10: The Fourier transforms for the quincunx QMF kernels.

    Bandsplitting       inverse        pairs       (BIP       filters):   

In transforms based on QMF kernels, the basis set is
orthonormal and so the sampling functions are identical to the
basis functions. But orthogonality is not required for image
coding: it is only necessary that the transform be invertible. In
general, then, the sampling functions can be quite different
from the basis functions. As noted above, the sampling matrix
for a non-orthogonal basis set is readily derived as the
transpose of the inverse of the basis matrix.

Suppose that one wishes to use an extremely simple decoder at
the expense of a more complex encoder. A very simple band-
splitting transform can be built from the 3-tap low-pass and
high-pass kernels:

[ .25 .5 .25 ] and [-.25 .5 -.25 ].

These kernels are not a proper QMF pair and do not lead to an
orthogonal basis set. Nonetheless, when placed on a staggered
grid they do form a linearly independent basis set. That is, the
basis matrix F is non-singular, and therefore the corresponding
sampling matrix, G, is derived as

G = (F-1)T.

The resulting sampling kernels take the form shown in table 4.
The true inverse sampling function has non-zero taps over the
entire image; however we show a 15-tap version that has been
derived by truncating it and scaling the taps to achieve
orthogonality and a DC system gain of unity. We have found
this 15-tap sampling function to work quite well in coding
images. (A more accurate 21-tap version is also shown).

The 3-tap kernels are extremely easy to compute, using only
shifts and adds, with no multiplications. They can be combined
separably to produce 2-D kernels. In this case the
corresponding 2-D sampling functions are just the separable
products of the 1-D sampling functions.

     Application       to       image        coding:   

QMF pyramids perform admirably in the task of image data
compression. We report here on results with the compact odd-
tap kernels of table 1. A 9-tap separable pyramid was built,
each sub-image was quantized, and then the coded image was
reconstructed. Entropies were computed for each level, and
combined to give the net bit rate for the image. We show
results for the Lena image at 256x256 pixels.

Figure 11(a) shows the Lena original; fig. 11(b) shows the
image coded at 0.65 bit/pixel using the 9-tap kernel. Figure
11(c) is also coded at 0.65 bit/pixel, but using the 3-tap BIP
pyramid. Both images look quite good considering the low bit
rate. The 9-tap kernel performs somewhat better, both in terms
of MSE and in terms of visual appearance. However, the
performance of the 3-tap pyramid is impressive: since 3-tap
reconstruction is so simple it may be useful in applications
requiring fast and inexpensive decoding hardware.

We compared the results of this pyramid coding with 16x16
block DCT coding using the algorithm of Chen and Pratt
(1984). The 9-tap QMP pyramid’s performance, as measured
by mean squared error, was typically equal to that of the DCT
within about 5%, varying slightly with from image to image.
However the QMF pyramid's visual appearance was
noticeably better than that of the DCT. At low bit rates, the
DCT suffers from a blocky appearance, whereas for the
pyramid the noise is distributed in a less noticeable manner.
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Figure 11:  Data compression of the 256x256 Lena image. (a) Original.
(b) 9-tap pyramid, 0.85 bit/pixel. (c) 3-tap pyramid, 0.65 bit/pixel.

Figure 12:  Progressive transmission with three types of pyramid. Top row:
9-tap QMF pyramid. Bit rates for the 9-tap sequence are: 0.03, 0.09, 0.24,
0.49 bit/pixel. Rates for the other sequences are essentially the same. The
final image, at 0.65 bit/pixel is not shown (see fig. 11).
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Note that we are using the pyramids in a fairly "raw" state in
this comparison -- we have not yet combined them with other
methods such as vector quantization and adaptive techniques.
Other workers (Woods and O’Neil, 1986; Tran et al, 1987)
have shown that more elaborate coding can lead to further
improvements in the performance of QMF coders. Because
our kernels are so compact, we expect that they will combine
especially well with spatially adaptive methods.

    Progressive       transmission:   

For many applications it is desirable that a low resolution
version image become available quickly, and that higher
resolution becomes available as time goes on; this is known as
progressive transmission. Many image coding techniques can
be modified to allow progressive transmission. But in the case
of pyramids, which are inherently multiscale representations,
progressive transmission is achieved simply by sending
information from successive pyramid levels in sequence. This
adds no informational overhead.

Figure 12 shows a series of progressive transmission images
for three different types of pyramid. The first row is for the 9-
tap QMF pyramid; the second row is for the 3-tap BIP pyramid;
and the third row is for the hexagonal QMF pyramid. The
successive images show reconstructions from levels 5, 4, 3,
and 2 of the pyramid (reconstruction from level 1 reproduces
the original image; this is not shown.) These pyramids were
also quantized for data compression, and the entropies are
shown in the figure caption. A recognizable approximation to
the image becomes available very quickly. The 9-tap QMF
pyramid gives the best results, but the 3-tap BIP works almost
as well. The hex pyamid works fairly well but introduces
hexagonal artifacts, which we hope to reduce in the future
with improved kernel design. Again, since the 3-tap recon-
struction is so easy to implement, it may be useful in devices
that must be fast and inexpensive.

    Summary    

Pyramids built with QMF kernels have a number of desirable
properties. Their basis functions are localized in space and
spatial frequency, and appear at all scales in a self-similar
fashion. The hierarchical computation is highly efficient. Since
the basis set is orthonormal, the number of coefficients in the
transform is equal to the number of pixels in the original image.

The simplest QMF pyramid is based on the Haar transform; but
its localization in frequency is so poor that it is of little use.
Practical QMF pyramids require larger kernels. Well-behaved
kernels with an even number of taps tend to be rather large.
On the other hand, odd-tap kernels can be more compact than
the commonly used even-tap kernels. To form an orthogonal
basis set, these kernels must be applied on staggered grids.
Kernels with widths as small as 7 can produce highly accurate
reconstructions. A kernel of width 9 was found to have good
performance for efficient image coding.

When 1-D QMF kernels are applied separably in two
dimensions they divide an image into 4 subimages: a low-pass a
vertical, a horizontal, and a diagonal subimage. The vertical
and horizontal subimages are tuned for orientation as well as
spatial frequency, a property that may be useful for various
image processing tasks. Cascading the operations, always using
the low-pass image from the prior level, leads to an efficiently
computed self-similar image pyramid.

Non-separable kernels can also be used. A pyramid that scales
by  factors  of √2  can be created with  a non-separable  kernel

applied on a quincunx grid. A hexagonal QMF pyramid that
scales by octaves can also be produced, it has three-fold
symmetry and self-similarity, and is composed entirely of
oriented basis functions.

QMF pyramids perform quite well for image data compression.
The 9-tap separable pyramid, when used with simple entropy
coding, gives performance equal to a blocked DCT in terms of
mean squared error, and superior to it in terms of perceptual
degradation.

Band-splitting inverse pair (BIP) kernels offer a useful
alternative to standard QMF kernels. These form a basis set
that is linearly independent but not orthogonal. The appropriate
sampling functions, derived by inverting the basis matrix, are
therefore different from the basis functions. We find that a 3-
tap BIP pyramid, when used in conjunction with a 15-tap
inverse-pair sampling kernel, gives data compression
performance almost as good as that of a 9-tap QMF pyramid.

QMF and BIP pyramids are particularly well-suited to
progressive transmission. Since the representations are
inherently multi-resolution one can generate efficient
progressive transmission systems by simply sending the data in
the right sequence.
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Table 1: tap values for odd tap lowpass QMF kernels. Lowpass
kernel is shown, with center tap indexed to zero;
corresponding high-pass kernels are derived by multiplication
with -1n. Kernels are scaled for unity DC gain.

Table 4: Band-splitting inverse pair (BIP) kernels: 3-tap and its
inverse-pair sampling kernel, shown in 15-tap and 21-tap
versions. Low-pass kernel and sampling function are shown,
centered on tap 0. The high-pass kernel and the high-pass
sampling function are obtained by multiplying the lowpass
functions with -1n.

Table 2: Quincunx 2-D QMF kernels, non-separable. High-pass kernel is obtained from low-
pass by multiplication with -l(n+m). Tap values achieve near orthogonality but are not optimized
for tuning.

Table 3: Hexagonal QMF kernels. Only the low-pass and the horizontal high-pass are shown;
the two other high-pass kernels are the same except for axis. Tap values achieve near
orthogonality but are not optimized for tuning.
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