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Abstract

Human motions generate characteristic spatiotem-

poral patterns. We have developed a set of techniques
for analyzing the patterns generated by people walk-

ing across the �eld of view. After change detection,

the XYT pattern can be �t with a smooth spatiotem-
poral surface. This surface is approximately periodic,

reecting the periodicity of the gait. The surface can

be expressed as a combination of a standard parame-
terized surface { the canonical walk { and a deviation

surface that is speci�c to the individual walk.

1 Introduction

Walking humans are self-occluding, non-rigid artic-
ulated objects. As a result, optical ow and feature
tracking typically have great di�culty analyzing the
motion. However, if we examine an XYT volume of a
set of walking people, some distinctive patterns reveal
themselves, suggesting that alternate strategies may
be useful.

Figure 1 shows a single frame of an image sequence
with several people walking, and �gure 2 shows the
XYT volume of the sequence sliced at two heights.
Uniform translation of the upper body results in tilted
stripes; the moving legs generate braids. We have pre-
viously shown that one can �t XT snakes to these
slices and thereby analyze the gait (Niyogi and Adel-
son 1994). This method avoids the need to identify
and track feature points such as those required in an-
alyzing in moving light displays.

Here we extend our previous work, treating the
XYT pattern as a volume and �tting it with a spa-
tiotemporal surface (c.f. Baker 1989, Bolles and Baker
1989). Our surface �tting routines are related to
others that have been used in �tting 3-D data (Ter-
zopolous et al 1988, Pentland and Sclaro� 1991, Cohen
and Cohen 1990, McInerney and Terzopoulos 1993),

but we treat the time axis somewhat di�erently than
the spatial axes.

The surface �tting is reasonably easy because hu-
man walks tend to be similar in XYT. Thus we can
de�ne a canonical walk which can be used as an ini-
tial �t to a given observed walk. Figure 3(a) shows
a surface traced out by a closed curve which outlines
the upper body plus the left leg. Figure 3(b) shows a
combination of surfaces that trace out both legs and
upper body. The surface can be parameterized by spa-
tial position and scale, temporal period and phase, and
can be sheared in space-time according to the velocity
of the walk. This surface was generated by combin-
ing data from several walkers using methods described
below.

The surfaces can be used to control the parameters
of a stick model (Hogg 1983, Rohr 1983, Niyogi and
Adelson 1994). However, we can also use the surfaces
themselves to directly accomplish various tasks, such
as motion recognition and tracking.

2 Approach

Our approach is simple: First, we recover the pa-
rameters that de�ne an individual's gait using some
simple pattern analysis routines; these parameters
control two canonical spatiotemporal surfaces which
coarsely track the individual. Second, we deform these
spatiotemporal surfaces to �t image data; this allows
for accurate tracking of the individual.

2.1 Detection

To generate the initial �t we must estimate the pa-
rameters. We currently assume each human walks
frontoparallel to the image plane in front of a �xed
camera. Under these conditions, each walker gener-
ates a stripe in XT; slicing along this stripe allows
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us to use simple pattern analysis to recover gait pa-
rameters. If there are several walkers, as in the ex-
ample shown, we estimate their several velocities with
a Hough transform. We employ change detection to
highlight moving objects; the background is recovered
through median �ltering and the di�erence between
each frame of an image sequence and the background
is squared and clipped to yield a new image sequence
C(x; y; t). A change-detected XT-slice, shown in �g-
ure 4(a), is transformed to Hough space, and the most
popular straight lines are selected. The winners are
shown in �gure 4(b).

For each individual walker it is necessary to esti-
mate the top and bottom heights as well as the period
and phase of the walk. These parameters can be es-
timated by taking a vertical slice down the middle of
the slanted walking pattern. Figure 5 shows a slice
for a walker moving frontoparallel to the image plane:
The walker maintains roughly the same size on the
image plane; the legs are visible as they periodically
cross the plane of the slice.

There are six parameters to be recovered, depicted
in �gure 6:

� xi; xf : the initial and �nal x position of the
walker, at ti and tf . The walkers velocity is

vx =
xf�xi
tf�ti

.

� yh; yt: the bounding y coordinates of the walker,
approximately the image y locations of the head
and toe.

� T : The walker's period, in frames.

� �: The phase of the gait, (0 � � � 2�).

To recover the above parameters, we employ the
following steps:

� To recover xi and xf , all change detected
XT-slices are collapsed into one XT-slice with
Chough(x; t) =

P
y C(x; y; t). Hough transforms

allow us to �nd the x(t) lines. Figure 4(b) shows
an XT-slice with candidate x(t) signals superim-
posed.

� To recover yh and yt, a slice O(y; t) is obtained
from a change detected image sequence C(x; y; t)
with O(y; t) = C(x(t); y; t); �nding the convex
hull of this image yields the four parameters.

� To recover T and �, the lower periodic pat-

tern is cropped between yh+yt

2 and yt from the
slice O(y; t) to obtain a periodic pattern P (y; t).
An autocorrelation sequence is built: q(m) =P

n;tP (n; t)P (n+m; t) using FFT analysis (in-

verse Fourier transform of the magnitude of the

Figure 1: One frame from an image sequence with
several walkers.

Fourier transform). A peak is found in q(m) be-
tween 1 Hz and 3 Hz. If there is no signi�cant
peak, the slice doesn't correspond to a walker,
and processing stops. Peaks are found using sim-
ple thresholding. The walking period T is just
twice the period of the slice. The phase � is ob-
tained by using the phase at the frequency 2�

T
.

2.2 Modeling

The parameters derived above specify the canoni-
cal spatiotemporal surfaces that will be used to �t the
walking pattern. There are two spatiotemporal sur-
faces: one corresponding to the top half of the body
plus the left leg, another corresponding to the top half
of the body plus the right leg. We perform separate
analysis on the two spatiotemporal surfaces.

Following Terzopoulos and Metaxas (1991), each
spatiotemporal surface s(u; v) is a closed tube in
space-time whose intrinsic coordinates are (u; v). In
our coordinate system, u is a parametric variable in-
dexing the closed curve in XY which outlines the
body plus one leg; the variable v traverses time
(ti � v � tf ). The surface is implemented using
a vector-valued parametric representation s(u; v) =
[x(u; v); y(u; v); t(u; v)]T .

The spatiotemporal surface s(u; v) is composed of
two components:

s(u; v) =m(u; v) + x(u; v)

wherem(u; v) is a canonical walk appropriately scaled
and shifted, and x(u; v) is a displacement function
which will be the deviation from the canonical walk.

The canonical walk c(u; v) is a periodic spatiotem-
poral surface of unit height and unit time. One period
of this walk was obtained by bootstrapping from our
previous work (Niyogi and Adelson 1994), in which
four x(y; t) spatiotemporal sheets were recovered for
�ve walkers in 26 image sequences. We averaged across
all spatiotemporal sheets to obtain four \canonical"
sheets, and bridged the head and feet together with
the addition of extra nodes. Arms are not present in
these surfaces, but there is little reason why a more



Figure 2: Slicing an XYT cube above the torso reveals
stripes; slicing an XYT cube below the torso reveals
braided patterns.

(a)

Canonical spatiotemporal surface - Left leg

(b)

Canonical walk - Both surfaces, viewed in XYT

Figure 3: (a) One of the two spatiotemporal sur-
faces that form a canonical walk. (b) Both surfaces
of canonical walk m(u; v), with translation removed.

(a)

(b)

Figure 4: (a) Change detected XT slice, collapsed from
all heights. (b) One XT slice, with potential walkers'
translation superimposed in white.

Figure 5: By slicing along the direction of walker
translation, a periodic image is obtained. The white
splotch in the center is a second walker walking in the
opposite direction.
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Figure 6: Diagram of the six model parameters to
be recovered: (a) From a collapsed XT slice, Hough
transforms allow recovery of xi and xf ; (b) A model
slice along the direction of translation, where black
represent change-detected areas. Convex hull analysis
on this slice yields yh and yt, and FFT analysis yields
T and �.

complicated surface description could not handle extra
appendages.

Given our recovered six parameters, we can control
our canonical spatiotemporal surfaces as follows:

m(u; v) = t(u; v) + kc(u;
v � ti

T
+

�

2�
)

k = diag(yt � yh; yt � yh; 1)

t(u; v) = [xi +
v � ti

tf � ti
(xf � xi); y

h; 0]T

Note that we approximate the size variation by linear
scaling in height only, and assume the walking speed
and walking period are approximately constant. Fig-
ure 3(b,c) shows two views of canonical spatiotempo-
ral surfaces m(u; v) for one walker, after scaling and
translation. Figure 8 shows three typical frames from
an image sequence tracked with a canonical walk.

To recover a more accurate spatiotemporal surface,
the displacement surface x(u; v) is allowed to deform
so as to �t the data while maintaining smoothness.
The displacement function x(u; v) is initially set to
zero.

We used a variation of the deformable surface model
described in Terzopoulos and Metaxas (1991), and fur-
ther developed in McInerney and Terzopoulos (1993).
A brief summary of their work is presented below for
completeness. They formulate a deformation energy
for a surface x(u; v) as

Ep(x) =

Z Z
�10jxuj

2 + �01jxvj
2 +

�20jxuuj
2 + �11jxuvj

2 + �02jxvvj
2dudv

where �ij and �ij specify the elasticity of the material.

The x(u; v) mesh is tesselated into discrete nodal
points, and approximated as a weighted sum of piece-
wise polynomial basis functions Ni:

x(u; v) =

nX
i=1

Ni(u; v)qi

where qi is a vector of nodal variables associated with
mesh node i:

qi = [xTi ; (x�)
T ; (x�)

T ; (x��)
T ]T

In our case, the x(u; v) mesh consists of C1 continu-
ous rectangular �nite elements de�ned in dimension-
less coordinates (�; �).

The above formulation results in equations of mo-
tion:

Cq0 +Kq = fq(u; v)

with damping matrix C, sti�ness matrix K, and fq
as nodal data forces. For our preliminary work, we
used a constant sti�ness matrixK for the entire mesh,
formed by �ve smoothness parameters of the deforma-
tion energy �10, �01, �20, �11, and �02. Each node in
the displacement mesh is updated with:

q(�+��) = q(�) + ��
�
C(�)

�
�1

(f
(�)
q �Kq(�))

To re�ne our spatiotemporal surface, each node of the
spatiotemporal surface is attracted to spatiotemporal
edges by applying forces from the change-detected im-
age sequence C(x; y; t). We compute two force image
sequences by �ltering C(x; y; t):

Fx(x; y; t) = G2
x(x; y) �C(x; y; t)

Fy(x; y; t) = G2
y(x; y) �C(x; y; t)

where G2
x and G2

y are second derivatives of Gaussians
in the x and y direction. For all nodes in the mesh
with coordinates at (x; y; t) and normal n̂, a force fqi

is applied:

fqi
= n̂ � [Fx(x; y; t); Fy(x; y; t); 0]

T

Nodes are constrained to move only in the x and y
direction. Only the nodes in the displacement x(u; v)
are modi�ed.

We iterate for three scales of Gaussian, from low-
frequency to high-frequency. This has the e�ect of
establishing large deformations quickly; smaller defor-
mations re�ne the surface further. A coarse to �ne
approach in sampling the (u; v) mesh leads to faster
convergence. Note that although we currently use op-
erations on a change detected image sequence to apply
forces on the mesh, a more sophisticated representa-
tion, perhaps based on spatiotemporally oriented �l-
ters, might be used instead.



Recovered spatiotemporal surfaces for a typical im-
age sequence are shown in Figure 7. The surfaces are
shown superimposed on the original image sequence in
�gure 9; compare to the coarse tracking of the canoni-
cal walk in �gure 8. Note that by observing continuity
in space time, the problem of occlusion is bypassed:
self-occlusion of legs and occlusions of other walkers is
not a signi�cant problem.

While our current approach has only been demon-
strated on frontoparallel walkers, clearly pose esti-
mates could be found. The walker's pose can be ob-
tained from the parameters that describe the shape of
the spatiotemporal slice in �gure 5. As pose varies,
the appropriate spatiotemporal surface to be super-
imposed also changes. Depending on the estimate
of walking direction, we can superimpose a di�erent
model surface estimate m(u; v). This would be simi-
lar in style to many of the view-based approaches cur-
rently employed in face recognition. We are currently
extending our work in that direction.

3 Conclusion

Human motions generate characteristic spatiotem-
poral patterns, which can be �t with spatiotemporal
surfaces. We have considered the case of humans walk-
ing frontoparallel to the camera. In this case, we are
able to take advantage of certain regularities in gait
patterns; human walks are periodic and tend to look
similar between individuals. Thus we can establish a
standard \canonical" walk that can be �t to individ-
ual walks by estimating a small number of parameters.
Simple pattern analysis of spatiotemporal images al-
lows us to estimate these parameters. We re�ne the
initial estimate and deform the spatiotemporal sur-
faces to accurately track the individual.

Although we have only dealt with a restricted set of
motions, it may be possible to generalize this approach
to other motions. Any stereotyped motion pattern
could be characterized with a canonical spatiotempo-
ral surface; a dictionary of such surfaces could be used
in recognition and tracking.
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Recovered walk - Both surfaces, viewed in XYT

Recovered walk - Both surfaces, viewed in XT

Figure 7: Two views of both deformed spatiotemporal surfaces s(u; v).

Figure 8: Three frames from an image sequence with both canonical spatiotemporal surfacesm(u; v) superimposed
in white. The canonical spatiotemporal surface gives only a coarse �t to the walker.

Figure 9: Three frames from an image sequence with both deformed spatiotemporal surfaces s(u; v) superimposed
in white. The recovered surface tracks the walker much more accurately.


