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| MAGE DATA COWMPRESSI ON W TH THE LAPLACI AN PYRAM D*
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Abst ract

We describe a new technique for inage encoding
in which Gaussian-like operators serve as the basis

functions. The representation differs from es-
tablished techniques in that the Gaussian code ele-
ments are localized in both space and spatial fre-
quency.

Pi xel to pixel correlations are first renoved

by subtracting a |ow pass filtered copy of the
image fromthe imge itself. The result is a net
data conpression since the difference, or error

i mmge has |ow variance, and the |ow pass filtered
imge nmay be represented at reduced sanple densi-
ty. Further data conpression is achieved by quan-
tizing the difference inage and repeating the en-
coding process for the lowpass filtered imge

The encoding process is equivalent to sanpling
the image with Laplacian operators of many scal es
Thus the code tends to enhance salient image fea-

tures. A primary advantage of the present code is
that it is well suited for many inage analysis
tasks as well as for data conpression. Fast al go-
rithms are described for coding and decodi ng

l. Introduction

A common characteristic of inmges is that
nei ghboring pixels are highly correlated. To rep-
resent the image directly in terns of the pixe
value is therefore inefficient: nobst of the en-
coded information is redundant

The first task in designing an efficient, com
pressed code is to find a representation which, in
effect, decorrelates the inmage pixels. This has
been achi eved through predictive and through trans-
form techni ques.

In predictive coding pixels are encoded se-
quentially in a raster format. However, prior to
encodi ng each pixel, its value is predicted from
previously coded pixels in the same and preceding
raster lines. The predicted pixel value, which
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represents redundant information, is subtracted
from the actual pixel value, and only the dif-
ference, or prediction error, is encoded. Since
only previously encoded pixels are used in predict-
ing each pixel's value, this process is said to be
causal . Restriction to causal prediction facili-
tates decoding: to decode a given pixel its pre-
dicted value is reconputed from already decoded

nei ghboring pixels, and added to the stored pre-
diction error

Non- causal prediction, based on a symetric
nei ghbor hood centered at each pixel should yield
nmore accurate prediction, and hence greater data
conpressi on. However this approach does not per-
mt sinple sequential decoding. Non-causa
approaches to inmage coding typically involve inmage
transforms, or the solution to large sets of
si mul t aneous equations. Rather than encode pixels
sequentially, they are encoded all at once, or by
bl ocks

Both predictive and transform techni ques have
advantages. The former is relatively sinple to
impl ement and readily adapted to l|local inmage
characteristics. The latter generally provides
greater data conpression, but at the expense of
greater conputation

Here we shall describe a new techni que for
renoving inmage correlation which is internediate
between the predictive and transform nethods. The
technique is non-causal, yet conputations are
relatively sinple.

The predicted value for each pixel is conputed
as a local weighted average, using a symetric.
uni nodal , weighting function centered on the pixe
itself. The predicted values for all pixels are
first obtained by convolving this Gaussian-like
wei ghting function with the image. The result is a
lowpass filtered imge which is then subtracted
from the original

Let go(ij) be the original imge, and g,(ij) be
the result of applying an appro-priate |ow pass
filter to g, The prediction error Ly(ij), is
then given by

Lo(i8) = go(i]) — au(i)
Rat her than encode g, we encode L, and g,. This
results in a net data conpression because (a) L,
is largely decorrelated, so may be represented



pi xel by pixel with many fewer bits than g, and
(b) g, is lowpass filtered so may be encoded at a
reduced sanple rate.

Further data conpression is achieved by
iterating this process. The reduced image, g,, is
itself lowpass filtered to yield g, and a second
error image is obtained: Ly(ij) = g,(ij) — g,(ij).
By repeating these steps several tinmes we obtain a
sequence of two-dinensional arrays L, L;, L, .Ly
each of which is smaller than its predecessor (by
a factor of I/4). If we now inmagine these arrays
stacked one above another the result is a tapering
pyram d data structure. The value at each node in
the pyramid represents the difference between two
Gaussi an-1i ke functions convolved with the original
imge. The difference of Gaussian (or DOG is
equi valent to the so-called Laplacian operators
comonly used in image enhancenent (Rosenfeld and
Kak, 1976). Thus we refer to the proposed com
pressed inmage representation as the Laplaci an-
pyram d code.

The coding scheme outlined above will be
practical only if required filtering conputations
can be performed with an efficient algorithm A
suitable fast algorithm has recently been devel oped
(Burt, 1981) and will be described in the next sec-
tion.

Two additional characteristics of
cian-pyramd code may give it an advantage over
ot her encoding systems. First, the code is very
simlar to inmage representation in the human visual
system Thus additional conpression may be
achi eved by quantizing the code elements, wth
quantization levels directly matched to perceptual
character-istics of human observers. Second, and
perhaps nore inportant, is the fact that the
Lapl aci an- pyramid code tends to enhance salient
imge features. Laplace operators are used in
conputer inmmge analysis to detect sinple features
such as edges. |Inmmge representations based on
convolution with Laplaci ans have been proposed for
a W de variety of basic analysis tasks including
texture analysis, notion, and stereopsis (Marr and
Poggi o, 1979; Pietikainen, 1980). Thus the La-
pl aci an-pyram d code provides not only a conpressed
representati on but one which is appropriate for
conput er i mage under st andi ng.

t he Lapl a-

Il. The Gaussian Pyramd

The first step in Laplacian pyramd coding is
to lowpass filter the original image g, to obtain
imge g,. We say g, is a "reduced" version of g,
in that both reso-lution and sanple density are de-
creased. In a simlar way we form g, as a reduced
version of g, and so on. Filtering is perforned
by convolution with a Gaussian-like weighting func-
tion, so the sequence of images g, 9;, .. , Oy IS
called the Gaussian pyramd.

A fast algorithm for generating the Gaussian
pyramid is given in the next sub-section. In the
follow ng subsection we show how the sane algorithm
can be used to "expand" an inmmge array by interpo-
lating val ues between sanple points. This device
is used here to help visualize the contents of
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levels in the Gaussian pyranmid, and in the next
section to define the Laplacian pyramd.

A) Gaussian Pyram d Generation

Suppose the image is represented initially
by the array go which contains C colums and R rows
of pixels. Each pixel represents the |ight inten-
sity at the corre-sponding inmage point by an in-
teger, |, between 0 and K-1. This inmage becones
the bottom or zero level of the Gaussian pyram d.
Pyramid level | contains imge g,, which is a re-
duced, or lowpass filtered version of g, Each
value within level 1 is conputed as a wei ghted
average of values in level Owithin a 5 by 5 wn-
dow. Each value within level 2, representing g,,
is then obtained from values within level | by
appl ying the sane pattern of weights. A graphical
representation of this process in one dinmension is
given in Figure |,

The level to level averaging process is per-
formed by the function REDUCE.
gy = REDUCE(g, _,) (1)
whi ch neans
for levels 0 < I <N
and nodes i,j 0 <i <G, O<j <R
2 2
g, (i,j) = wmn)g, _,(2i+ m2j + n)
2, 2
Here N refers to the nunber of levels in the

pyramid, while G and R are the dinensions of the
Ith level. Note in Figure | that the density of
nodes is reduced by half in one dinension, or by a
fourth in two dinen-sions fromlevel to level. The
di mensions of the original inage are appropriate

for pyra-md construction if integers M, M;, and N
exi st such that C = M2"¥ + 1 and R = 2" + 1. (For
exanple if M, and M, are both 3 and Nis 5 then

i mges neasure 97 by 97 pixels.) The dinensions of
g are G = M2 + 1 and R= M2%'+ 1.

The generating kernel. Note that the sane
5 by 5 pattern of weights wis used to generate
each pyramid array fromits predecessor. This
wei ghting pattern, called the generating kernel, is
chosen subject to cer-tain constraints. For sinpli-
city we nake w separable:

wmn) = W(m W(n).

The one-di nmensional, length 5, function w is nor-
mal i zed

2 .

Wm =1

m=-2

and symetric
W(i) = W(-i) for i =0, | and 2.

An additional constraint is called_equal contribu-
tion (Burt 1981). Let W(0) =a, W (-1) = W (I) =
b and W (-2) = W (2) =c. In this case equal

contribution requires that a + 2b = 2c. These three

constraints are satisfied when



W(O = a

W(-1) = W(I) = (1/4)a
W(-2) = W(2) = 1/4 - al2
Equi val ent wei ghting functions. For certain
choi ces of the generating kernel, i.e., for cer-
tain a, the process of iterative pyram d genera-

tion described above is equi-valent to convol ving
the image with Gaussian-like weighting functions.
That is, the value of any node could have been ob-
tained directly (although at considerably greater
conpu-tational cost) by convolving the image with a
Gaussi an-1i ke weighting function centered at the
node. The size of the equival ent weighting func-
tion doubles from one level to the next, as does
the di stance between sanples.

Equi val ent wei ghting functions for Gaussian-
pyramid levels 1, 2 and 3 are shown in Figure 2.
In this case a = 0.4. The shape of the equival ent
function converges rapidly to a characteristic form
wi th successively higher planes of the pyramd, so
that only its scale changes. However, this shape
does depend on the choice of a in the generating
kernel . Characteristic shapes for three choices of
a are shown in Figure 3. Note that the equival ent
wei ghting functions are particularly Gaussian-like
when a = 0.4. When a = 0.5 the shape is triangu-

lar; when a = 0.3 it is flatter and broader than a
Gaussi an.
Fast filter. The effect of convolving an

imge with a Gaussian-like function is to blur, or
| owpass filter, the image. The py-ramd algorithm

reduces the filter band limt by one octave from
level to level. The sanple interval is also re-
duced by this factor, but renmins below the
Nyquist limt. This is a fast algorithm requiring
fewer conputational steps to conpute a set of

filtered images than are required by the fast
Fourier trans-formto conpute a single filtered
image (Burt, 1981).

B. Gaussian Pyranmid interpolation.

We now define a function EXPAND as the re-
verse of REDUCE. Its effect is to expand an M + 1
by N+ 1 array into a 2M+ 1 by 2N+ 1 array by
interpol ating new node val ues be-tween the given
val ues. Thus EXPAND applied to array g, of the
Gaussian pyramid would yield an array g, , which is
the same size as g, . ;. If EXPAND is applied |
times, g, is ex-panded to the size of the original
i mage.

Let g, , be the result of expanding g, n

times. Then

9,0 = 0 (2)

and
9,,n = EXPAND(g, )

By EXPAND we mean
for levels O< | < Nand O< n
and nodes i,j 0 <i <G, 0<j <R,
2 2
g ,.(ij) =4 z wmn)g, . ((i-m/2,(j-n/2)).

m=-2 n=-2
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Only terns for which (i - m/2 and (j -
integers are included in this sum

n)/2 are

Gaussian pyramd filtering and interpolation
are illustrated in Figure 4. In this exanple the
original image" is a one-dinensional step func-
tion of width 129 sanples, as shown in Figure 4a.
Sanpl e values of g are shown as dots in Figure 4b.
The expanded function g,, shown in 4b as a dark
curve, gives a graphic representation of the con-
tents of g, clearly showing the effects of |ow
pass filtering. The function g,, was obtained by
repeated interpolation between sanple points,
usi ng EXPAND. The sane result could have been ob-
tained if the equivalent weighting functions at
level 4 were scaled by the sanple values and then
sumred. Appro-priately scaled equival ent weighting
func-tions are shown in Figure 4b as |ight curves
centered at the level 4 sanple points.

I1l. The Laplacian Pyramd

Recal | that our purpose for constructing the
reduced inmage g, is that it may serve as a pre-
diction for pixel values in the original imge g,.
To obtain a conpressed representa-tion we encode
the error image which remains when an expanded g,
is subtracted from g,. This image becones the bot-
tom | evel of the Laplacian pyranmd. The next Ievel
is genera-ted by encoding g, in the sane way. W
now give a formal definition for the Laplacian
pyram d, and exam ne its properties.

A) Laplacian Pyrami d Generation

The Laplacian pyramd is a sequence of error
imges, Lo, L, .. , Ly Each is the difference

between two | evels of the Gaussian pyram d. Thus:
for O<Il <N (3)
L, =g, - EXPAND(g,.,)

9411

Since there is no inmge g,, to serve as the pre-
diction inmage for g, we say Ly = g,

Equi val ent wei ghting functions. The value at
each node in the Laplacian pyranmd is the dif-
ference between the convolutions of two Gaussian-
like functions with the original inmge. Again,
this is equivalent to convolving an appropriately
scal ed Lapl acian weighting function with the image.
The node value could have been obtained directly by
applying this operator, although at considerably
greater conputational cost.

Just
set of
i mage,

as we may view the Gaussian pyramd as a
| owpass filtered copies of the original

we may view the Laplacian pyramid as a set
of band-pass filtered copies of the image. The
scal e of the Laplacian operator doubles from | evel
to level of the pyramd while the center frequency
of the pass band is reduced by an octave. These
points are illustrated in Figure 5, which shows the
equi val ent Lapl aci an wei ghting functions at three
successive levels of the pyramid and their Fourier
transforms.



In order to illustrate the contents of the
Lapl acian pyramd it is helpful to interpolate be-
tween sanple points. This may be done within the
pyram d structure by Gaussian interpolation. Let
L, , be the result of expanding L, n tinmes using
Fig. 2. Then L, , is the size of the original
imge. L,, for the one-dinensional step image of
Figure 4a is shown in Figure 4c.

Decoding. It can be shown that the original
i mge can be recovered exactly by expanding, then
surming all the levels of the Laplacian pyramd:

N

90 = Z L

A nore efficient procedure is to expand L, once,
and add it to Ly,, then expand this imge once and
add it to Ly, and so on until level O is reached
and g, is recovered. This procedure sinply re-
verses the steps in Laplacian pyram d generation.
From Eq. 3 we see that:

Oy = Ly (4)
and for I = N- 1, N 2, .. , O
g, = L + EXPAND(g,,)

B) Quantizing the Laplacian Code

Qur objective in constructing the Laplacian
pyramid has been to obtain image data conpression
by renmoving inmage correlations. Substantial
further conpression may be obtained by quantizing
the pyram d node values. Such quantization inevit-
ably intro-duced distortion in the reconstructed
i mge. However, with judicious design this dis-
tortion may not be disturbing to human observers.

It is known, for exanple, that humans are nore
sensitive to gray level fluctuations in lowfre-
qguency conponents of an inage than to high-fre-
guency conponents (Carlson and Cohen, 1978;
Kretzmer, 1956). Thus we mmy choose to allocate
fewer quantization levels to L, than to other
pyramid levels. It is also known that humans are
less sensitive to a given fluctuation in gray I|evel
when it occurs in the neighborhood of a prom nent
image feature than when it occurs in isolation
(Netravali and Prasada, 1977). Advantage may be
taken of this perceptual linmt-ation by adjusting
the quantization |levels adaptively over the image.

In the exanples we shall show, three quantiza-
tion levels are used for level zero and five for
the other levels. While adaptive techniques can be
efficiently incorporated in the pyramd structure,
we have not done so in these exanpl es.

Let G(ij) be the result of quantizing L (ij).
We have adopted the follow ng sinple (and non-
optinmal) quantization policy:
+APf Lo(ij) = +
colif) ={ 0 if -T < L(ij) <+T (5)
SAE Lg(if) < -

At level I, 0 <I <N
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2A if 2T < L(ij)
A if 2T/3 < L (ij) < 2T
G(ij) = 0 if -2T/3 < L (ij) < 2T/3
A if -2T < L(ij) £ -2T/3
-2A i f L(ij) =27
Nodes at level N are always positive. For

= Ly(ij).

Summary of the coding and decodi ng procedures.
Figure 6 is a flow diagram for Laplacian pyramd
coding. The first step, shown on the far left, is
bottom up con-struction of the Gaussian pyramd
i mges g, 0y, .. Oy (Eq. 1). The Lapl acian pyra-
md imges L, L,, .. Ly are then obtained as the
di fference between successive Gaussian |levels
(Eq. 3). These are quantized to yield the com
pressed code represented by the pyranm d of values
C(ij) (Eq. 5). Finally image reconstruction
foll ows expand and sum procedure (Eg. 4) using C
values in the place of L values. Here we desig-
nate the reconstructed inmage by rg.

simplicity we say Cyij)

V. Experinental Results and Di scussion

Figure 7 illustrates the Laplacian pyramd
operation. The original image (lower left)
measures 97 by 97 pixels, and is represented by 64
gray |evels.

The bottom row of Figure 7 shows the inmage
blurred at successively higher levels of the
Gaussi an pyram d. Each |evel has been expanded
to 97 by 97 pixels. The top row shows the cor-
respondi ng contents of the Laplacian pyramd.

Again each level of the Laplacian is the difference

between | evels of the Gaussian. Conversely, each
Gaussian level is equal to the sum of all Laplacian
imges at the same |evel and above. Thus, reading

the bottomrow fromright to left one can see the
i mmges sharpen as finer and finer Laplacian inmages
are added to the sum wuntil finally the original
image is reconstructed. Figure 7 involves no
guantization, so the reconstruction is perfect.

The top row of Figure 8 shows the effects of
guanti zation (Eg. 5) on the Laplacian pyramd.
The bottom row of Figure 8 shows the result of
i mage reconstruction from the quantized Lapl aci an
pyram d code. A careful conparison of Figures 7
and 8 will reveal sonme changes in contrast. How
ever no disturbing artifacts have been introduced
by quantization which mght interfere with human
perception.

We may now conpute the image data conpression
obt ai ned through quantization alone. This may be
specified as the number of bits of information
needed to represent the compressed code for each
pixel in the original inmge. Suppose there are P
pixels in the imge. There will then be P nodes
in the zero level array of the C pyram d. Level 1
will have P/4 nodes, level 2 will have P/ 16, and
so on. The total nunmber of nodes excluding |evel



zero is P/3. For each node in level O we need to
specify one of three gray levels. Assuming all
values are equally likely we require at |east
bits. Nodes in higher levels require |0g,5
bits, since they may assume any of five val ues.
The total number of bits per pixel is given by
(Plog,3 + PI3 log, 5 /P or 2.36 bits per pixel.
This figure does not include substantial further
reductions which may be obtained with variable

I ength Huf fnan coding and adaptive techniques.
Nodes in higher levels require |0g,5.

1 0g,3

It should be observed that the Laplacian
pyramid code is particularly well suited for
gressive image transmission. In this type of
transm ssion a coarse rendition of the image is
sent first to give the receiver an early inpression
of image content, then subsequent transm ssion pro-
vides image details of progressively finer resolu-
tion (Know ton, 1980). The observer may term nate
transm ssion of an inmage as soon as its contents
are recognized, or as soon as it becones evident
that the image will not be of interest. To achieve
progressive trans-mission, the top-nost |evel of
the pyramid code is sent first, and expanded in the
receiving pyramid to forman initial very coarse

pr o-

imge. The next lower level is then transmitted,
expanded, and added to the first. and so on. At
the receiving end, the initial inmage appears very
blurry, but then comes steadily into "focus." This
progression is illustrated in the |ower row of
Figure 8, fromright to left. Note that while 2.4
bits are required for each pixel of the full
transm ssion (left-nost bottom i mage, Figure 8)

less than a third of these, or 0.77 bits, are

needed for each pixel of the previous inmge (second
fromleft, Figure 8), and 0.19 bits for the inage
previous to that (third fromleft).

Finally, it should be observed that the La-

placi an pyranmi d encoding scheme requires relatively
sinpl e conputations. The conputations are |ocal

and may be performed in parallel, and the sane
conputations are iterated to build each pyramd
level fromits predecessor. W nmmy envision per-
form ng Laplacian coding and decoding in real tine
using array processors and a pipeline architecture.

benefit stressed in the intro-
duction is that in conputing the Laplacian pyra-
m d, one automatically has access to bandpass
copies of the image. In this representation
imge features of various sizes are enhanced and
are directly available to image processing and
pattern recognition.

An addi tional
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