
1 Introduction
An ellipse rotating rigidly in the image plane may be perceived in at least three different
ways (Musatti 1924; Wallach et al 1956; Vallortigara et al 1988). Sometimes, the veridi-
cal rigid rotation is perceived but two other `illusory' motions can be seen as well. The
ellipse may be perceived as deforming nonrigidly in the image plane, as if it were made of
rubber. Alternatively, the ellipse may be perceived as executing a rigid motion in depth,
as if it were a coin twisting in 3-D.

Wallach et al (1956) and Hildreth (1983) have pointed out that these additional
percepts should not really be called `illusions'öthey are interpretations that are fully
consistent with the retinal input. Since the ellipse is bounded by a smooth contour, there
exists an infinite number of velocity fields that would generate the same retinal sequence.
In accordance with the well-known aperture problem (Wallach 1935; Marr and Ullman
1981; Hildreth 1983), at any point along the contour the local motion information is
consistent with an infinite number of possible motions (figure 1a). Graphically, this
ambiguity corresponds to a c̀onstraint line' in velocity space (Adelson and Movshon
1982; Nakayama and Silverman 1988a) (see figure 1b). To illustrate this ambiguity,
figure 2 shows velocity fields that have been computed analytically such that they are
consistent with the local constraint lines of a rotating ellipse. Figures 2a and 2c show the
rotational velocity fields for ellipses of two aspect ratio, and figures 2b and 2d show
the deforming normal flow; at every location the flow is perpendicular to the contour
of the ellipse. Each field is fully consistent with the local constraint lines.

Despite the infinite number of possible interpretations, observers typically report
seeing one dominant interpretation at a time. For example, as Wallach et al first
reported, a `narrow' ellipse tends to be perceived as rigidly rotating, while a `fat' ellipse
tends to be perceived as nonrigidly deforming (at short presentation times) or as a
coin rotating in depth (after extended viewing) (Vallortigara et al 1988). As in other
examples of ambiguous stimuli, the consistent choice of one possible interpretation
over others can provide insight into the computation done during perception. In this
paper, we focus on the choice between the two 2-D interpretations. We report some
new variants of rotating-ellipse stimuli and discuss the constraints these phenomena
place on models of human motion analysis.
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2 Phenomena
The phenomena described here are sufficiently robust that they work for naive and expe-
rienced observers under different viewing conditions. Results reported in this section have
been obtained under the following conditions. Image sequences were generated on a Silicon-
Graphics O2 computer and were recorded on an sVHS video cassette via the SGIO2 s-video

rotational flow normal flow
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Figure 2.Velocity fields calculated analytically to be consistent with the local motion information
of a rotating ellipse. (a) and (b) Rotational and normal flow for a rotating ellipse of aspect ratio 0.2.
Owing to the aperture problem, the local data are equally consistent with both velocity fields. (c) and
(d) Rotational and normal flow for a rotating ellipse of aspect ratio 0.8.

(a) (b)
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Figure 1. The aperture problem. The motion of a smooth curve cannot be resolved locally.
Motion along the curve's tangent cannot be detected. (a) A rotating ellipse. (b) A velocity-space
plot of the motions consistent with the information in the window in (a). All velocities lying on
the dashed line are consistent. The arrow orthogonal to the constraint line denotes the normal
velocity. The other arrow denotes the rotational velocity.
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output board. The rotational motion of the ellipse was sampled at a rate of 18 per frame
and all contours were anti-aliased with the use of the SGI hardware to create the percept
of a smooth motion. Using this method we generated eight short movie clips (referred
to below as clips 1 through 8). Five subjects (including one of the authors) free-viewed
these clips and were instructed to verbally report the perceived motion of the ellipse
including `̀ what material the ellipse appears to be made of ''. The percepts reported by
the observers were in agreement for all of the clips except clip 8 (discussed below). None
of the observers reported multiple interpretations. We have also shown these displays to
hundreds of observers at scientific meetings (Weiss and Adelson 1995a, 1995b, 1996a)
who reported similar percepts. We urge the reader to view the clips (available online at
www.perceptionweb.com/perc0300/weiss.html) to gain a firsthand experience of the per-
cept. Details of the parameters used in the experiments are given in the appendix.

2.1 Narrow versus fat
Figure 3 and movie clip 1 illustrate the effect of ellipse aspect ratio on the perceived
rigidity, first reported by Wallach et al (1956). Observers tend to perceive narrow ellipses,
in which the aspect ratio is far from unity, as rigidly rotating in the image plane. As
the aspect ratio becomes closer to unity, the percept becomes less and less rigid and
subjects describe the ellipse as gelatinousöit appears to deform nonrigidly with motion,
qualitatively similar to the normal flow in figure 2d.

2.2 The influence of satellites
Braunstein and Andersen (1984) showed that placing a small number of dots on a rotating
smooth contour can dramatically change the perceived motion. Nakayama and Silverman
(1988a, 1988b) showed a strong influence occurs even if the points are off the contour
(see figure 4). They showed that subjects `misperceived' the motion of an ogive translating
horizontally in the image planeöit appeared to deform nonrigidly. When two hori-
zontally translating dots were added to the display, however, the curve appeared rigid.
We wanted to see whether the rotating ellipse is subject to a similar influence.

We added four dots, or `satellites' to the display, and the motion of these satellites
could take on one of two possible motions. In the first case, which we call `rotating
sats', the four dots took part in the same rotational motion as the ellipse. In the second
case, which we call `nonrigid sats', each dot executed normal motion: the motion of
each dot was calculated to lie in the direction perpendicular to the contour of an
ellipse with the same shape as the displayed ellipse, but with a larger radius. The speed
was calculated so that the normal component of the velocity was equal to the normal
component of rotation of the ellipse. Thus in both cases the motion of the dots was
consistent with the constraint lines generated locally by a rotating ellipse.

appears rigid appears nonrigid

(a) (b)

Figure 3. Narrow versus fat. A narrow rotating ellipse (a) appears rigid while a fat rotating
one (b) appears nonrigid.
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Figure 5 and movie clip 2 summarize the percepts. When the satellites move in the
direction of rotation, the ellipse appears to rotate rigidly. When they move in the
normal direction, it appears to deform nonrigidly. Subjects often refuse to believe that
the ellipse is doing the same thing.

2.3 Effect of satellites persists over static background
The strong influence of the satellites on the percept of the ellipse suggests that motion
information from the satellites is propagated across space thereby influencing the contour.
But does the visual system propagate all motion constraints in the image indiscrimin-
ately? Many authors (eg Terzopoulos 1986; Hutchinson et al 1988) have pointed out
that such global propagation would lead to estimates that are quite wrong. They have
advocated an alternative approach whereby motion boundaries stop the propagation.

In order to create a motion boundary between the ellipse and the dots, we placed the
ellipse over a textured static background. This has the effect of surrounding the satellite with
unambiguous motion signals corresponding to zero velocity. Since the satellites are unam-
biguously moving, most motion boundary algorithms would find a boundary surrounding
each satellite. Thus a model that stops propagation at motion boundaries would predict that
there should be no influence of the satellites in this display. Figure 6 and clip 3 summarize
the perceptöthe effect of the satellites persists. Observers continue to report that the
perceived motion of the ellipse changes dramatically as the motion of the satellites is varied.

appears rigid appears nonrigid

(a) (b)

Figure 4. The influence of satellites on the percept of a translating ogive (Nakayama and Silverman
1988a). The rigidly translating ogive appears to be nonrigid (b) but, when a pair of translating
dots are added to the display, the curve appears rigid (a).

appears rigid appears nonrigid
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Figure 5. The influence of satellites. A small number of dots profoundly influence the perceived
motion of an ellipse with an intermediate aspect ratio. (a) When the dots execute a rigid rota-
tional motion, the ellipse appears rigid. (b) When they execute a nonrigid deformation, the ellipse
appears gelatinousöthe perceived motion is a nonrigid deformation similar to the normal flow.
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2.4 Effect of satellites persists upon a sheet of translating dots
Although placing the satellites on a static texture does not diminish the effect of the
dots, this might be attributed to some special mechanism for static stimuli as opposed
to moving stimuli. We wanted to create a display where the stimulus was embedded
among additional moving features.

The displays were generated in the manner shown in figure 7. We placed the ellipse
and the satellites amidst 50 dots moving vertically (figure 8 and clip 4). The satellites and

appears rigid appears nonrigid

(a) (b)

Figure 6. The effect of satellites persists over a static background. Even though a motion discon-
tinuity is now formed between the satellites and the ellipse, the satellites continue to have an
influence.

Figure 7. The method of constructing the displays in figure 8. The ellipse and satellites are
placed amidst a sheet of translating dots.

appears rigid appears nonrigid

(a) (b)

Figure 8. The effect of satellites persists upon a sheet of translating dots. The 4 rotating (a) or
deforming (b) dots have a dramatic influence on the perceived motion, while the 50 dots that move
vertically do not influence the perceived motion. They are perceived as lying on a different surface.
The vertically moving dots are shown here unfilled, but all dots were identical in the actual display.
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the 50 additional dots were identical except for their motions. As with the static texture,
the effect of the satellites persists. Observers continue to report that the perceived
motion of the ellipse changes dramatically as the motion of the satellites is varied.
The large effect of the 4 satellites should be contrasted with the lack of influence of the
50 translating dots. Observers report seeing the vertical dots as belonging to a single
surface, while the ellipse and the 4 satellites appear to be on a separate surface.

2.5 Effect of satellites persists at rather large distances
In the previous display, many of the vertically moving dots were far from the ellipse
contour. This raises the possibility that their lack of influence on the ellipse is simply
a result of the distance. We wanted to see whether the effect of satellites is restricted
only to dots that are very close to the contour.

We increased the distance between the satellites and the ellipse contour (figure 9 and
clip 5). Subjects reported that the satellite effect was reduced. However, some effect
persisted at rather large distances. Even when the distance of the satellites was equal
to the minor axis of the ellipse, subjects reported a marked difference between the
perception of the ellipse in the two conditionsörotating sats and nonrigid sats.

2.6 Competition between satellites at different distances
To further study the decrease of influence as a function of distance, we constructed a
stimulus in which satellites at different distances compete (figure 10 and clip 6). The
inner satellites underwent rigid motion and the outer dots underwent nonrigid motion.

appears rigid appears nonrigid

(a) (b)

Figure 9. The effect of satellites persists at rather large distances. Even when the satellites are at a
distance that is equal to the minor axis of the ellipse, the perceived motion varies when the motion
of the satellites is changed. The influence on the motion, however, is weaker at larger distances.

appears rigid appears nonrigid

(a) (b)

Figure 10. A display in which the relative distance between the ellipse and the satellites is varied.
(a) With a large ellipse, the outer satellites win. (b) With a small ellipse the inner satellites win.
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Subjects reported that the closer set of satellites won. Thus in figure 10a the ellipse
was perceived as rotating rigidly while in figure 10b it was perceived as deforming
nonrigidly, even though it was always doing the same thing. When the ellipse was
roughly halfway in between, observers reported a bistable percept that they could often
flip at will.

Note that in this display we held the satellite locations constant and varied the
radius of the ellipse. Similar results were obtained when we varied the satellite loca-
tions and held the ellipse radius constant. Also, similar results were obtained when
the inner dots underwent rigid motion and the outer dots underwent nonrigid motion.
In both cases, the closer set of satellites won.

2.7 Effect of satellites persists when they are displaced in depth
When stereo disparity was used to place the satellites at a different depth plane than
that of the ellipse, we expected the effect of the satellites to disappear (cf Shiffrar et al
1995). Surprisingly (figure 11 and clip 7), the satellites continued to exert a powerful
influence on the percept of the ellipse. Observers reported seeing a significant depth
difference between the ellipse and the satellites; at the same time, the percept of the
ellipse switched from rigid to nonrigid depending on the motion of the satellites.

appears rigid

appears nonrigid

Left eye Right eye

Left eye Right eye

(a)

(b)
Figure 11. Stereo pairs showing an ellipse at a different depth plane than the satellites. Even when
the satellites and the ellipse are placed at different stereo depth planes, the perceived motion of the
ellipse continues to be strongly influenced by the motion of the satellites.
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2.8 Competition between satellites at different depths
In analogy with the effect of 2-D distance, we wanted to see whether a competition
stimulus would reveal the effect of stereo depth.

We created a display with two sets of dots whose image-plane distance from the
ellipse contour was equal. However, when this display was viewed in stereo, the two
sets of dots were seen to lie on different depth planes (figure 12). When we moved the
ellipse in depth (clip 8) we again found a shift in the percept of the ellipseöit
appeared to move with the dots that were closer to its depth plane. This effect, how-
ever, appears to be rather weak. Out of five subjects in the present experiment two
subjects reported a strong effect of the satellites, two reported a weak effect, and one
reported no effect.

2.9 Summary of phenomena
The perceived motion of a plain rotating ellipse is a smooth velocity field that may
be rigid or nonrigid. Satellites off the ellipse may influence its motion, provided they
move in a way consistent with the motion of the ellipse. Adding a second layer does
not block the influence. The influence of satellites depends to some extent on their
proximity in 2-D space, and depends slightly on proximity in depth. These are qualitative
conclusions that constrain motion analysis models. In the next section, we implement
representative models to get more quantitative constraints.

appears rigid

appears nonrigid

Left eye Right eye

Left eye Right eye

(a)

(b)

Figure 12. (a) A stereo pair with two sets of satellites at different depth planes; the ellipse is in
the same depth plane as the outer dots. (b) A stereo pair with two sets of satellites at different
depth planes; the ellipse is in the same depth plane as the inner dots. The ellipse appears to
move with the set that is closer in depth.
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3 Models
In order to understand the constraints the phenomena place on models of motion
analysis, we implemented three representative models. We chose these models because
they can be applied directly to the stimuli shown to humans. Unlike verbal models
that can only be applied to an experimenter's description of the stimulus, these models
calculate a velocity field for an arbitrary image sequence. We compared this predicted
velocity field to the percept reported by our observers.

The three models are each representative of a class of models. All classes share an
assumption of smoothness but define smoothness slightly differentlyölocal smoothness
in a window, smoothness along contours, and global smoothness. Figure 13 illustrates
the three classes of algorithms. The shaded area denotes the region over which smooth-
ness is assumed. In least-squares algorithms, the motion is assumed to vary smoothly
within a small `window' of the image. In contour smoothness, the motion along the
contour is assumed to vary smoothly, while in global smoothness the motion is
assumed to vary smoothly over all the image. These smoothness assumptions lead to
predictions of influence given the three modelsöeach model predicts that only features
within the shaded area can influence the perceived motion of the ellipse. We now give
a more detailed explanation of the three algorithms implemented.

3.1 The algorithms
3.1.1 Local least squares (Lucas and Kanade 1981). Local-least-squares algorithms are
based on the idea that even though a single image location does not contain sufficient
information to solve for the local velocity (again, the `aperture problem'), a local patch
typically will have sufficient constraints. The Lucas and Kanade (1981) algorithm finds
the velocity vector that best fits all constraints within a local region. The phrase `best
fit' should be understood in the least-squares sense. The algorithm finds the vector
v � (vx , vy ) that minimizes:

J�v� �
X
x y

w�x, y��Ix �x, y�vx � Iy �x, y�vy � It �x, y��2 , (1)

where w(x, y) is a windowing function (eg a Gaussian in space) that defines the local
patch; and Ix , Iy , It are the spatiotemporal derivatives of the image sequence I (x, y, t).
Velocity is estimated at each point in the image based on a window centered at that
point. We will henceforth refer to this algorithm as the local-least-squares algorithm.

Lucas and Kanade is an easily implemented area-based algorithm that gives similar
results to more biologically oriented area-based algorithms such as Heeger's (1987) and
Bu« lthoff et al's (1989). Nowlan and Sejnowski (1995) have presented an extension to

,

least squares contour smoothness global smoothness

(a) (b) (c)

Figure 13. The three classes of algorithms compared. The shaded area denotes the region over
which smoothness is assumed. The algorithms predict that features within the shaded area will
influence the perceived motion of the ellipse.
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area-based algorithms whereby within each window one calculates (i) a velocity vector
and (ii) a reliability estimate. The responses of the reliability units in their model are
difficult to predict since they are based on a training procedure with many examples,
but their velocity estimates are similar to those computed by Lucas and Kanade.

3.1.2 Smoothness along contours. Hildreth (1983) presented a model that calculates the
velocity field of least variation along a contour in the scene. The algorithm begins
with extracted normal flow along a contour. That is, it assumes a set of points along
the contour indexed by the variable i, at which the normal component vN

i is known.
However, the orthogonal component of the velocity field, v?i , is unconstrained. The
algorithm finds these orthogonal components by requiring that the resultant velocity
field, vi � vN

i � v?i be maximally smooth. This is accomplished by minimizing a `non-
smoothness' measure:

J�fv?i g� �
X
i

kvi ÿ viÿ1k2 . (2)

Hildreth also discussed using other non-smoothness measures and we have experi-
mented with them as well. The results do not qualitatively change when we use
higher-order derivatives. Hereinafter we call the result of minimizing equation (2) the
contour-smoothness algorithm.

3.1.3 Global smoothness (Horn and Schunck 1981; Grzywacz and Yuille 1991). Smoothness-
based algorithms find the velocity field that fits the local constraints at every image
location and is maximally smooth. This is a special case of the regularization approach
to computational vision (Poggio et al 1985), whereby smoothness constraints are
used to solve ill-posed problems in early vision. Horn and Schunck (1981) presented an
algorithm that minimized a sum of two costs, a `data' term that penalizes for velocity
fields that do not satisfy the local constraints and a `smoothness' term that penalizes
velocity fields that change rapidly. If we denote by v(x, y) the velocity at location x, y,
the algorithm minimizes:

J�fvg� �
X
x y

�Ix �x, y�vx � Iy �x, y�vy � It �x, y��2 � lkDv�x, y�k2 . (3)

The differential operator D measures the derivative of the velocity field at every loca-
tion. Horn and Schunck used the first derivative, whereas Grzywacz and Yuille used
an infinite sum of derivatives of different orders. We used here the Grzywacz and Yuille
definition of D:

Dv �
X1
n� 0

an
qn

qr
v , (4)

where r � (x, y) and an � s 2n=�n !2n). We used s � 0:7 where x, y ranged from ÿ1 to 1.
We have obtained qualitatively similar results with using only the first derivative
(a1 � 1, ai � 0). Hereinafter we call the result of minimizing equation (3) the global-
smoothness algorithm.

The inputs to the local-least-squares algorithm and to the global-smoothness
algorithm are spatiotemporal derivatives of the image sequence. We therefore generated
two frames of gray-level image sequences corresponding to the stimuli described in
the phenomena section and we estimated derivatives using a simple finite-difference
scheme (Horn 1986). This simple scheme is only an approximation to the true image
derivatives but it works fine when the images are appropriately smooth. In order to
avoid temporal and spatial aliasing, we used blurred images moving in small amounts
between frames (eg figure 17). For the contour-smoothness algorithm, we used as input
the normal velocities at 100 points along the contour of a rotating ellipse.

,
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3.2 Results
A shorthand summary of our results is shown in table 1. Since subjects reported only
verbally on the perceived motion, we did not conduct a quantitative comparison of
the model velocity fields and the subjects report. Rather, an entry `succeeds' in table 1
signifies a qualitative agreement between the reported percept and the output of the
model. An entry `fails' means that the model cannot even account qualitatively for the
human percept; and an entry `depends' refers to cases when the model's output varies
with parameters as does the degree of fit with the human percept.

The fact that none of the models in table 1 can fully account for all percepts is
not surprising. After all, models are meant to be simplified abstractions that will not
account for all possible data. Thus our goal here is not merely to list failures, but rather
to understand what is lacking in these models so that this can aid the construc-tion of new
models. We now discuss the successes and failures of each model separately.

3.2.1 Local-least-squares. This model fails to account even for the basic narrow-versus-
fat phenomena. This is illustrated in figure 14. For the `narrow' ellipse that subjects
report seeing as roughly rigid (ie the velocity field shown in figure 2a), the estimated
velocity fields at the top and bottom of the ellipse are consistent with the percept.
However, at the two sides of the ellipse, the estimate is terribly wrong. The algorithm
predicts a fast local velocity in the opposite direction to the rotational velocity, and
the resulting predicting velocity field is highly nonrigid.

Figure 14b illustrates the source of the failure of the local-least-squares algorithm
for the narrow ellipse. The algorithm is searching for the best translation that is
consistent with the local data, but the ellipse is rotating, not translating. Figure 14b
shows two frames from a rotating-ellipse sequence superimposed. For the location
at the side of the ellipse, the only location in the subsequent frame that matches lies in
the direction opposite to the veridical rotation. This failure is a result of assuming local
translation in the algorithm. The fact that humans perceive a narrow ellipse as rotating
rigidly suggests that the human visual system does not make the same assumption of
local translation.

The local-least-squares algorithm with a fixed window size also fails to explain the
effect of satellites at a distance. In this algorithm, the estimated velocity at a point
depends only on the information available within a local patch around that point.
Thus any features outside this local patch should have no influence on the perceived
motion. In particular, satellites that are far away from the contour should have no

Table 1. A shorthand summary of the comparison between the output of three motion-analysis
algorithms and the percept reported by observers: `succeeds' means that the output of the model
qualitatively agrees with the report of human observers, `fails' means the output disagrees, and
`depends' means that the outputs of the models vary with parameters.

Phenomena Least squares Contour smoothness Global smoothness
(Lucas and (Hildreth 1983) (Grzywacz and
Kanade 1981) Yuille 1991)

(1) Narrow vs fat fails succeeds succeeds
(2) Satellites depends fails succeeds
(3) Sats and background fails fails fails
(4) Sats and moving fails fails fails
(5) Sats at distance fails fails depends
(6) Sats proximity depends fails depends
(7) Sats at depth NA NA NA
(8) Sats stereo proximity NA NA NA
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influence on the motion of the contour. The fact that humans perceive a different
motion for the ellipse, depending on the motion of the satellites, suggests that the
human visual system does not make such a strong locality assumption.

3.2.2 Contour smoothness. Figures 15a and 15b show the success of the contour-
smoothness algorithm in accounting for the narrow-versus-fat effect (this was already
shown in Hildreth 1983). Although the predicted velocity field for the narrow ellipse is
not completely rigid, it is far more similar to the rotational flow than the predicted
velocity field for the fat ellipse. Indeed, if we calculate Hildreth's non-smoothness
measure [equation (2)] for the rotational and normal flow in the case of a fat ellipse,
we find that the normal flow has higher smoothness given by this measure. In contrast,
when we do the same calculation for a narrow ellipse, we find that the normal flow has
lower smoothness. The fact that humans perceive a rigid rotation for narrow ellipses and
not for fat ones suggests [along with other stimuli discussed in Hildreth (1983) and
Mulligan (1992)] that the human visual system makes some assumption of smoothness,
not unlike Hildreth's definition of smoothness.

Figure 15c shows the failure of the contour-smoothness algorithm in accounting for
the effect of satellites. The predicted velocity field for an ellipse with rotating satellites

(a) (b) (c)

Figure 15. (a) The velocity field predicted by the contour-smoothness algorithm (Hildreth 1983) for
a narrow rotating ellipse. The velocity field is more similar to a rotational flow than to normal
flow. (b) The velocity field predicted by the contour-smoothness algorithm for a fat rotating
ellipse. The velocity field is more similar to normal flow than to rotational flow. Thus, this model
qualitatively accounts for the narrow-versus-fat phenomena. (c) The velocity field predicted by
the contour-smoothness algorithm for a fat rotating ellipse with 4 rotating satellites. Unlike the
human percept, there is no influence of the motion of the dots on the motion of the ellipse.

(a) (b)

Figure 14. (a) Local-least-squares algorithms such as that of Lucas and Kanade (1981) fail to
predict human percept of plain ellipses. For a narrow ellipse, subjects report perceiving motion
similar to the rotational flow in figure 2. The local-least-squares algorithm, however, predicts a
very different velocity field. (b) The source of the failure for the local-least-squares algorithm:
the algorithm attempts to find the best-fitting local translation and in a rotating stimulus this
may lead to errors.
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is identical to the predicted velocity for the plain ellipse (figure 15a). This is of course to
be expected from the definition of the contour-smoothness algorithm in which motion
information is only propagated along the contour. The satellites that are off the contour
therefore have no influence on the perceived motion of the contour.

One way to explain the influence of satellites in the framework of contour smoothness
is to assume some sloppiness in the extraction of the contour, and thus satellites near the
contour may be mistakenly thought to lie on the contour. However, the fact that satel-
lites continue to exert an influence at large distances from the contour and in the presence
of texture makes this explanation unlikely. Thus the ellipse phenomena support the
conclusion reached by Grzywacz and Yuille (1991) when they analyzed the Nakayama
and Silverman (1988b) translating ogiveöpropagation of motion signals only along
contours is insufficient to account for human perception. Motion constraints must also
propagate across space.

3.2.3 Global smoothness. Figures 16a and 16b show the success of the global-smooth-
ness algorithm in accounting for the narrow-versus-fat effect. (The algorithm outputs
a velocity vector at every point in the image, but for clarity we show these vectors
only along the ellipse contour.) In line with the contour-smoothness results, the
smoothness assumption here causes the fat-ellipse velocity field to be more nonrigid
than that of the narrow one. Figure 16c shows an important success of the global-
smoothness approach in comparison with the contour-smoothness approach. When
satellites are added to the display, the predicted motion of the ellipse varies according
to the motion of the satellites. Thus in figure 16c the rotating sats cause the motion
field of the fat ellipse to be almost perfect rigid rotation (compare to figure 16b where
the fat ellipse by itself has a very nonrigid motion field predicted by the same algo-
rithm). This result depends somewhat on l in equation (3)öfor large values of l the
dots do not capture the ellipse.

This highlights the major distinction between the global-smoothness approach and the
contour-smoothness approach: in global-smoothness motion measurements are propa-
gated across 2-D space and hence features off the contour may influence the motion of
the contour. The satellite effects on ellipses suggest that propagation of measurements
across space is a part of human motion analysis.

Global-smoothness approaches, however, fail whenever the scene contains more than
one motion (eg in cases of occlusion and transparency). Figure 17a shows the output of
the global-smoothness algorithm for the ellipse with satellites amidst a sheet of vertically
moving dots (figure 8). The algorithm attempts to describe the scene with a single
smoothly varying motion field, and thus the motion of the ellipse and the rotating

(a) (b) (c)

Figure 16. Global-smoothness approaches succeed in predicting perceived velocity in stimuli
containing a single motion. (a) Estimated flow for a narrow rotating ellipse which is perceived as
rigid; the flow is nearly rigid. (b) Estimated flow for a rotating fat ellipse which is perceived
as nonrigid; the estimated flow is nonrigid. (c) Estimated flow for a rotating fat ellipse flanked
by rotating dots; the ellipse is perceived as rigid, and the estimated flow is indeed rotational.
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satellites is estimated very incorrectly. A similar feature is observed when the satellites and
the ellipse are placed on a textured background: the static motion signals cause the ellipse
to deform nonrigidly. These estimates by the global-smoothness algorithm should be
contrasted with the percept reported by human observers for the same stimuliöthe
motion of the satellites influences the percept of the ellipse, but the motion of the
vertically moving dots (or the static texture) does not.

Is this failure of the global-smoothness algorithm a result of the particular parameters
we chose? When we change the parameters of the algorithm (eg use different differen-
tial operators D or different constants l) the results remain qualitatively similar. This
limitation can not be fixed with simple tweaking of parametersösomething is missing
from the representation. The global-smoothness assumption represents the scene in
terms of a single, smoothly moving object. The failure of such algorithms in accounting
for human perception suggests that humans use a more elaborate representation.

3.3 Summary of existing models
We again emphasize that our goal in implementing the three algorithms surveyed above
was not merely to show that they sometimes fail. All three models capture important
aspects of motion analysis and we wanted to understand the conditions under which
they succeed or fail to account for human perception of our phenomena. All three models
assume a form of smoothnessöimplicitly in the case of local-least-squares and explicitly
in the case of contour-smoothness and global-smoothness algorithms. The gelatinous
percept of fat ellipses suggests that some sort of smoothness assumption is indeed
made by the human visual system. At the same time, the phenomena rule out contour
smoothness (as in Hildreth 1983) or global smoothness (as in Grzywacz and Yuille 1991).
We need a representation that will allow constraints to propagate across space (as in
Grzywacz and Yuille) but at the same time allow for multiple layers of motion.

4 Layered models for motion analysis
In computer vision, it has long been recognized that global-smoothness approaches will
give erroneous estimates in the presence of occlusion or transparency. One approach
to fixing the global-smoothness assumption involves the use of discontinuities or `line
processes' (Geman and Geman 1984; Terzopoulos 1986). Rather than assuming that
the image motion can be well explained with a single smooth velocity field, these
approaches to motion analysis (eg Horn 1986; Hutchinson et al 1988) allow discontinuities

(a) (b)

Figure 17. Global-smoothness approaches fail to predict perceived velocity when the scene contains
multiple motions. (a) A single frame from a sequence of a rotating ellipse with rotating satellites
amidst a sea of vertically moving dots (figure 8); subjects perceive the ellipse to be rigid. (b) The
velocity field calculated with the use of the global-smoothness algorithm; the algorithm combines
the motion of the ellipse and all dots so that the resulting velocity field does not resemble rotation.
Similarly, the algorithm fails when the satellites are placed on a static background.
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to form in the velocity field. Thus, in general, the motion of two neighboring locations
is assumed to be similar, but if the local motions are highly dissimilar this assumption is
abandoned and a boundary is posited between the two locations.

To illustrate the smoothness-plus-boundaries approach consider figure 18. Figure 18a
shows a single frame from the ellipse plus static background display (figure 6), and
figure 18b shows idealized horizontal local velocity along a single scan line in the
image. At locations corresponding to the texture, the local velocity is zero. At locations
corresponding to the ellipse contour, and at locations corresponding to the satellites
there is a nonzero horizontal velocity, while inside the ellipse the velocity cannot be
locally determined.

Figure 18c shows the output of a global smoother on the local data; by trying to fit all
the data with a single, smooth function, such an approach oversmoothes. Static texture is
pulled along with the nearby motions, as if the entire image were on a single rubber sheet.
Figure 18d shows the output of a smoothness-plus-boundaries approach. The same
smoother was used as in figure 18c but no smoothing was done across discontinuities.
The advantage of the discontinuity approach is that when the boundaries are estimated
correctly, it avoids the oversmoothing problems associated with global smoothness. Thus,
in figure 18d, the highly dissimilar velocities in the ellipse and the static background
cause a boundary to form and therefore the motion of the ellipse is not influenced by
the static texture. This should be contrasted with the results of global smoothness in
which constraints from the static texture are propagated to the ellipse contour.

Despite the successes of smoothness-plus-boundaries in computer vision, these
approaches cannot fully account for the perception of our phenomena. An important
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Figure 18. An illustration of the smoothness-plus-boundaries approach. (a) A cross-section from
the image sequence of an ellipse and satellites rotating over a textured background. (b) Idealized
horizontal motion estimated locally. In practice the motion will be more noisy. (c) The result of
smoothing the local flow. (d) The result of smoothing with discontinuities.
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prediction of this approach is that once a boundary is formed, measurements on one
side of the boundary have no influence on the perceived motion on the other side
of the boundary. Referring again to figure 18, the highly dissimilar motions of the
satellites and the background would cause a boundary to form around the dots.
Thus there would be no predicted effect of the satellites on the motion of the ellipse
once the display is placed on static texture. As we discussed in section 2, human
subjects report a major influence of the satellites even when the satellites are placed on
a static background. This suggests that human vision does not use the smoothness-
plus-boundaries assumption.

The inability of the smoothness-plus-boundaries approach to propagate information
across boundaries has been discussed in the computer-vision literature as well. This has
led to the development of alternative approaches known as `layered models' (Adelson
1991; Darrell and Pentland 1991; Madrasmi et al 1993; Wang and Adelson 1994).

The concept of layered models is based on the representation used by Metelli and
others (Metelli 1974) in analyzing transparency displays with `scission'. In this repre-
sentation, a scene is assumed to consist of multiple, overlapping layers. Transparency is
a case where two or more layers overlap each other, each contributing some fraction
of the observed luminance. This sort of representation is also widely used in computer
graphics (Duff 1985).

Adelson (1991) advocated the use of layered models for the analysis of moving scenes.
Figure 19 illustrates how a layered decomposition can be used in motion analysis. The
scene is described by means of overlapping surfaces or layers, each of which has an

Observed
image
sequence

Frame 1 Frame 2 Frame 3

Derived
descriptions

Intensity map Velocity field

Intensity map Velocity field

Figure 19. Layered decomposition of image sequences (adapted from Wang and Adelson 1994).
In a layered description, an image sequence is decomposed into a small number of occluding lay-
ers or surfaces, and each layer has a corresponding motion field. An algorithm that assumes
smoothness of the velocity field of each layer is consistent with many of our phenomena.
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intensity map and a velocity field. In a full layered representation each layer would
also have a transparency map (not shown).

Much progress in motion analysis has been made with the use of such models
(Irani and Peleg 1992; Jepson and Black 1993; Ayer and Sawhney 1995; Weiss 1997).
Although differing in implementation, these algorithms share the notion of extracting
multiple velocity fields for each scene rather than a single velocity field as in global
smoothness. The scene is assumed to consist of a small number of layers and each layer
has an associated velocity field. The algorithms find the layered description that best
explains the motion data.

The development of algorithms to extract layered decompositions from image sequen-
ces is still a field of active research. The various approaches differ in the follow-
ing dimensions:
. How to decide how many layers should be used.
. How to describe and estimate the motion field of each layer.
. How to decide which locations in the image should belong to each layer.
As a representative of layered decomposition models, we have calculated the response

of the smoothness-in-layers model described by Weiss (1997) to the stimuli described
here.

The smoothness-in-layers algorithm finds velocity fields and assignment of pixels
to layers from a given image sequence. It does so by minimizing a cost function that
favors a small number of layers with smooth motions within a layer. More formally,
let K denote the number of velocity fields and vk(x, y) denote the velocity of layer k
at location x, y. The algorithm solves for K, v k(x, y) as well as soft assignment fields
gk (x, y). These soft assignment fields range from 0 to 1öa number that designates
the degree to which the pixel (x, y) is assigned to layer k. We use soft assignment
fields because they can represent uncertainty about assignments. For example, if the
algorithm is very sure that the location belongs to layer 1 then g(x, y) � �0:99, 0:01),
and less certain locations will have g(x, y) closer to (0.5, 0.5).

The velocity fields and assignments are found by minimizing:

J�fv kg� �
X
k

X
x y

l1gk �x, y��Ix �x, y�v k
x � Iy �x, y�v k

y � It �x, y��2 � l2 jjDv k�x, y�jj2

�gk �x, y� log gk �x, y� , (5)

subject to the constraint that
P

k gk (x, y) � 1 and with Dv defined as in equation (4).
It is interesting to compare equation (5) with equation (3). In both equations, there

is a `data' term that penalizes deviation from the constraint line and a `smoothness'
penalty that rewards smooth velocity fields. In equation (5), however, the `data' term is
gated by the assignment field so that a velocity field only needs to lie on the constraint
lines at locations that are assigned to that layer. Moreover, the `smoothness' penalty
is applied to each velocity field separately. Thus the algorithm rewards smoothness of
the velocity field of each layer, rather than rewarding global smoothness of a single
velocity field. As we discuss below, the third term in equation (5) gives an implicit
preference for a small number of unique layers.

Figure 20 illustrates the distinction between three approaches to imposing smooth-
ness on a velocity field. Figure 20a shows a graph of hypothetical velocity measurements
as a function of position that would arise when one moving surface partially occludes
a second moving surface. Figure 20b shows the output when a global-smoothness algo-
rithm is applied to this data. The constraints from each surface are blended with those of
the other surface. Figure 20c shows the output when a smoothness-plus-
discontinuities algorithm is used. The boundaries disable the propagation between
different segments of the same surface. Finally, figure 20d shows the output of a smooth-
ness-in-layers algorithm. Two smooth velocity functions are found, one for each surface.

,
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One can show that the cost function J in equation (5) can be derived from a
probabilistic model (Weiss and Adelson 1994; Weiss 1998a). It corresponds to the nega-
tive logarithmic posterior probability of the velocity fields under a particular choice
of prior probabilities. Furthermore, the soft assignments gk (x, y) correspond to the
probability that a pixel belongs to layer k under the mixture model. This correspon-
dence to statistical estimation allows us to use the expectation ^maximization algorithm
(Dempster et al 1977) to perform the minimization.

The correspondence to statistical estimation also allows us to find the number of
layers K that is most probable given the image data (Weiss 1998b). To choose whether
one layer or two layers are needed, we compare the value of J in equation (5) with K � 2
for the two choices. The one-layer description is encoded as two layers with identical
velocity fields. Finding the number of layers in this fashion leads to an implicit preference
for a small number of velocity fields (Weiss 1998b)öthe third term in equation (5) is
minimized when all the soft assignments are (0.5, 0.5) and that happens when the two
layers have identical velocity fields. Verbally, the algorithm can be described as trying to
find a minimal number of layers with smooth motions. That is, the algorithm prefers a
decomposition consisting of one layer with a smooth velocity field over two layers with
equally smooth velocity fields. On the other hand, the algorithm prefers two layers
with smooth velocity fields over one layer with a highly nonsmooth velocity field.

The algorithm has two free parametersöl1 , l2 öand both are held fixed in the results
shown here. We used the same input sequences that were used as input in the previous
sectionöagain we used blurred images moving slightly between frames to avoid aliasing.

To summarize, the `smoothness-in-layers' algorithm receives as input an image
sequence; it outputs (i) the number of layers, (ii) a velocity field for each layer, and
(iii) a soft assignment of pixels to layers.

4.1 Application to ellipse stimuli
We now describe the results of running the smoothness-in-layers algorithm on the
ellipse stimuli. For the narrow-versus-fat effect the algorithm behaves identically to the
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Figure 20. An illustration of the smoothness-in-layers assumption in 1-D (adapted from Wang and
Adelson 1994). (a) Hypothetical velocity estimates as a function of position; such data would
typically arise from two surfaces in depth. (b) Global-smoothness assumption applied to this data;
the measurements from the two surfaces are mixed together rather than segmented. (c) Piecewise
smoothness; information is not propagated across discontinuities. The resulting estimate is rather
noisy. (d) Smoothness in layers. Two smooth velocity functions are found, one for each surface.
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global-smoothness algorithms surveyed above. Figure 21 shows the output on a fat
ellipse. The algorithm finds that a single, smooth layer is sufficient both for fat and
for narrow ellipses. Since there is only one layer here, the assignment function g(x, y)
is constant as a function of space and is not shown. In this single-layer case, the
algorithm reduces to the algorithm in Grzywacz and Yuille (1991). Note that the algo-
rithm predicts that the background (which is untextured) is moving along with the
ellipse.

Figure 22 shows the results on a fat ellipse with rotating satellites. Again, a single layer
was found and the assignment function is not shown. Unlike the contour-smoothness models,
the algorithm succeeds in predicting the human percept of rigid rotation for the ellipse.

Why does the algorithm predict a rigid rotation for the ellipse with satellite? Note
that if the ellipse were seen as deforming nonrigidly then two layers would be needed:
a nonrigid layer for the ellipse and a rigid one (rotating) for the sats. On the other
hand, a single layer is sufficient when the ellipse is seen as rigid, and that is what the
algorithm indeed predicts.

Figure 23 shows the output of the smoothness-in-layers algorithm on a sequence
in which the ellipse rotates rigidly in the image plane with 4 satellites amidst a field of
vertically moving dots. The assignments are shown as gray-level imagesöwhite pixels
correspond to high probability of belonging to that layer and black pixels correspond
to low probability. Note that for the rotating layer, the pixels corresponding to the

(a) (b) (c)
Figure 21. (a) A single frame from a sequence in which an ellipse rotates rigidly in the image
plane. (b) The output of the smoothness-in-layers algorithm; a single layer is found with non-
rigid deformation. (c) The velocity field in (b) plotted only at locations along the ellipse contour.
Note that the result is identical to the global-smoothness algorithm (figure 16). Indeed when a
single layer is found, the smoothness-in-layers algorithm reduces to the Grzywacz and Yuille
(1991) algorithm.

(a) (b)

Figure 22. (a) A single frame from a sequence in which an ellipse rotates rigidly in the image
plane with 4 rotating dots. (b) The output of the smoothness-in-layers algorithm. A single layer
is found, with rotational motion.
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ellipse and the satellites are white, while the pixels corresponding to the vertically moving
dots are black. This means that the algorithm segments the ellipse and satellites from the
rest of the display. The ellipse is therefore predicted to rotate rigidly, consistent with the
percept reported by human subjects.

To understand the performance of the algorithm, note that to accurately describe
the scene with a single layer one would need a very nonsmooth motion field. The
two-layer description, on the other hand, is made up of two smooth layers and is
therefore preferred by the algorithm.

Figure 23 should be contrasted with figure 17 and with figure 15c. The contour-smooth-
ness algorithm and the global-smoothness algorithm both assume smoothness. Thus the
smoothness-in-layers algorithm shares this assumption with them. However, it predicts
very different velocity fields for this stimulus. Simply put: contour smoothness predicts no
features off the contour will influence the contour; global smoothness predicts all features
off the contour will influence the contour. Smoothness in layers, however, predicts only
some features will influence the contour. Specifically, only features that are calculated to
belong to the same layer will influence the contour. In this stimulus, the smoothness-in-
layers algorithm predicts a rigid rotation, consistent with the human percept.

We emphasize that the smoothness-in-layers model implemented here should be
viewed as a representative of the class of layered decomposition models. We expect
similar results with other layered models. Nevertheless, the success of the smoothness-
in-layers algorithm for accounting for the ellipse percepts suggests that human vision
may include a notion of smoothness as suggested by Hildreth and others, but smooth-
ness in layers rather than smoothness along a contour or global smoothness.

(b) (c)

(d) (e)

(a)

Figure 23. The results of the smoothness-in-layers algorithm when the satellites are embedded
in a field of translating dots. Two layers are found, one with rotational motion that includes the
ellipse and the 4 dots, and the other with vertical motion that includes the rest of the dots.
(a) A single frame from the sequence. (b) Ownership map for the first layeröwhite pixels
correspond to high probability of belonging to this layer. (c) Velocity field for the first layer.
(d) Ownership map for the second layer. (e) Velocity field for the second layer.
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4.2 Limitations of simple smoothness-in-layers model
The simple smoothness-in-layers model described here cannot account for all of our
phenomena. Specifically it fails to predict the two competition phenomena (effects 6
and 8) that show a variation in the percept of the ellipse as the relative proximity of
the ellipse to each dot is varied. To understand this failure, note that in figure 10 one
needs two layers to describe the sceneöone for the nonrigid deformation and one for
the rigid rotation. Whether the ellipse is assigned to the rigid or nonrigid layer does not
change the number of layers needed or their corresponding velocity fields. To account
for this percept, the algorithm needs to include a notion of `proximity'öthe algorithm
should prefer a decomposition whereby nearby points are assigned to the same layer.
As we discuss elsewhere (Weiss and Adelson 1996b; Weiss 1998a), the smoothness-
in-layers algorithm can be augmented to include a notion of proximity as well as other
nonmotion cues to grouping.

The notion of proximity required to account for our phenomena goes beyond the
notion of proximity that is implicitly assumed in most smoothness-based motion algo-
rithms. In all the algorithms surveyed here, the influence of satellites on the motion
of the ellipse will decrease as a function of distanceöthe further the satellites the less
the influence. Thus all the models (including the smoothness-in-layers one) would pre-
dict that when the satellites are sufficiently far away they would cease to influence the
ellipse. A comparison of effects 5 and 6, however, shows that this notion of proximity
is not sufficient to explain our phenomena. Both sets of satellites in effect 6 are suffi-
ciently close to the contour to exert an influence by themselves. When both are shown
at the same time, however, only the closer set of dots seems to have an influence.

A second limitation of the simple smoothness-in-layers model is that it computes
a 2-D motion field. It shares this limitation with all the models surveyed here. Since
these models have no representation of the third dimension, they cannot explain the
percept of a fat ellipse as a coin rotating in depth. How can this percept be explained?

Ullman (1979) has argued that the perception of 3-D motion is performed in two
distinct stages. The first stage computes a 2-D motion field while the second stage
interprets this motion field in 3-Döeither as the projected motion of a rigid 3-D object
or as a nonrigid object.

According to this view of motion perception, the rotating-coin percept is possible
only if the 2-D motion field calculated in the first stage is consistent with the projec-
tion of the coin's motion. Indeed, it can be shown that a nonrigid flow similar to that
computed by smoothness-based algorithms for the fat ellipse is consistent with the
projection of a rigid 3-D rotation outside the image plane (Todorovic̈ 1993). However,
the flow computed by smoothness-based algorithms for narrow ellipses is not consistent
with rigid rotation outside the image plane. Thus algorithms such as smoothness-in-
layers can account for the fact that fat ellipses are much more likely to be seen as coins
rotating in depth than are narrow ellipses. They cannot, however, account for subjects
seeing the coin percept rather than the deforming perceptöboth of these percepts give
rise to similar 2-D motion fields.

5 Conclusion
As first reported by Musatti over 70 years ago, an ellipse rotating rigidly in the image
plane is often not perceived veridically. We have investigated the perceived motion of
such ellipses under varying conditions and have shown that the addition of satellites off
the contour has a large influence on the percept of the ellipse. The effect is quite robust
and holds when the satellites are at a large distance from the ellipse contour and even
when they are placed at different stereo-depth planes. Furthermore, the effect holds when
a motion boundary is introduced between the satellites and the ellipse and when the
display is placed amidst a field of moving dots to create the percept of transparency.
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We have also looked at the effect of satellites on some other ambiguous motion
displays, including the translating ogive (Nakayama and Silverman 1988a, 1988b) and a
single, diagonal line moving in an aperture (Wallach 1935). We compared the percept
of the ogive when the satellites moved rigidly versus the case when the satellites executed
normal motion. Similarly, we compared the perceived motion of the line when the
satellites moved horizontally versus vertically. In both cases we find the same resultsö
a robust effect of satellites that persists at large distances and across stereo-depth planes.

By calculating the responses of three published computational models to the same
stimuli we have shown how these phenomena constrain the types of models needed to
account for the human percepts. Although all three models (local least squares, contour
smoothness, and global smoothness) capture an essential aspect of motion analysis,
none of them fully accounts for the percepts. Local-least-squares and contour-smooth-
ness models fail to account for effects of features at a distance from the ellipse. The
global-smoothness model fails to account for the effect of satellites when the display
is set on a static background or amidst a sea of moving dots.

We have also shown calculated responses of a recently proposed type of motion
models. These layered decomposition models make use of an intermediate level descrip-
tion whereby the scene is described with a small number of layers, each with a corre-
sponding velocity field. We have found that the smoothness-in-layers algorithm that
tries to find a minimal set of layers with smooth velocity fields can account for a wider
range of phenomena. Taken together, our results suggest the value of an intermediate-
level layered description in accounting for human motion perception.
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APPENDIX

Parameters used in the experiments
The ellipses oscillated about their centersöthe angle of the ellipse relative to the verti-
cal axis changed as a sawtooth function with an amplitude of 258. The rotation speed
was 728 sÿ1 so that each period of the sawtooth took approximately 1.38 s. Each clip
contained two conditions that were shown in alternation. Thus for clip 1, the two
conditions were `narrow' and `fat' and the clip contained 4.5 s of `narrow' followed by
4.5 s of `fat' followed by 4.5 s of `narrow' etc. Each clip was shown until the subject
was comfortable describing his or her percept (typically after one or two showings of
each condition). The stimuli were generated in a 4006400 pixel window that was
shown on a monitor so that 400 pixels extended over 30 cm. We allowed subjects to
adjust their viewing distance (in pilot experiments we found that the percepts are not
changed over a range of viewing distances from 0.2 to 2.0 m). We now give details for
each condition.
1. Narrow versus fat. The narrow ellipse had major axis of 304 pixels and minor axis
of 61 pixels (aspect ratio 0.2). The fat ellipse had major axis of 304 pixels and minor
axis of 277 (aspect ratio 0.91).
2. The influence of satellites.The ellipse had major axis of 304 pixels and minor axis of 271
pixels (aspect ratio 0.89). The four satellites were white circles with a radius of 4 pixels.
The distance from the edge of the satellites to the ellipse contour was 7 pixels.
3. Effect of satellites persists over static background. Conditions were identical to the
previous clip but the ellipse and the dots were both placed on a random-texture back-
ground ^ each pixel in the background was set randomly to be black or gray (quarter
the luminance of the ellipse and the satellites).
4. Effect of satellites persists upon a sheet of translating dots. This was identical to clip 2
but 50 translating dots were added. Each translating dot was identical to a satellite (a circle
with a radius of 4 pixels). The dots translated vertically with a speed of 72 pixels sÿ1.
The direction of motion oscillated with the same period as the rotation of the ellipse.
5. Effect of satellites persists at rather large distances. Here the distance between the
satellites and the ellipse contour was 74 pixels. The ellipse major axis was 176 pixels and
the minor axis 156 pixels.
6. Competition between satellites at different distances. Dots belonging to the inner set
were at a distance of 95 pixels from the center. Dots belonging to the outer set were
at a distance of 190 pixels from the center. The (unfilled) ellipse contour was varied
from a distance of 110 pixels to a distance of 175 pixels.
7. Effect of satellites persists when they are displaced in depth. The ellipses shown to
each eye were 200 pixels by 160 pixels (aspect ratio 0.8). The satellites had a disparity
of 7 pixels relative to the ellipse. The satellites were 5 pixels in size and at a distance
to the ellipse contour of 8 pixels.
8. Competition between satellites at different depths. The ellipses and satellites were the
same shape as in the previous clip. The outer dots had a disparity of 7 pixels and the
inner dots had zero disparity. The ellipse was flipped from having a disparity of 7 pixels
to having zero disparity.
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