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     Abstract:   

Recent work in human motion perception has          
conceptualized motion detection in terms of filters selective        
for spatio-temporal (ST) energy. One class of such models      
are called "energy models." They code motion energy, not
velocity as such, but we describe a velocity coding model      
based on the ST energy within given bands of spatial and
temporal  frequency.

The motion energy computations appear at first to be quite
different from the gradient-based computations that have        
been used in machine vision. But gradient systems that            
make appropriate use of confidence can be considered to     
derive  velocity  from  opponent  energy  measures.

We also note that in human vision, dynamic energy seems           
to be coded in a set of transformed axes, which are           
opponent motion energy (e.g. right - left) and counterphase
flicker energy. The flicker axis is often neglected, we note           
its possible  utility  in  visual  processing.

   Introduction:   

In several recent models of human motion perception, the  
motion analyzers  are considered to be built from linear         
filters that are specifically tuned to the "motion energy"            
that is physically present in the stimulus (Fahle and Poggio,     
1981; van Santen and Sperling, l984,1985; Adelson and      
Bergen, 1985; Watson and Ahumada, 1985; Fleet and         
Jepson, 1981, Ross and Burr, 1985, Wilson, 1985). Our        
interest here is to explore the computational properties of such
systems, and to relate them to some machine vision            
systems.

Spatio-temporal filtering is readily implemented in the             
fast, parallel architecture of visual cortex, as well as the
proposed architectures for many machine vision systems.  
Spatio-temporal energy analysis is a useful tool for
understanding  and  developing  motion  systems.

     Motion        as       tilt       in       (x,y,t)       space    :

The fundamental motivation is shown in figure 1, which       
shows three depictions of the same dynamic scene: a black
square moving to the right over time. In fig. 1(a), it is           
shown at one instant, with an arrow suggesting the          
rightward motion. In fig. l(b), an interval of time is shown            
as a three-dimensional volume, this is a complete record of       
the object's appearance over that time. In (x,y,t) space, the
moving square becomes a sheared parallelopiped. Finally,        
fig. l(c) shows an (x,t) slice through this volume, viewed         
from above. For convenience, we will show motion with              
(x,t) diagrams rather than the full (x,y,t) volume. Thus we         
will consider the spatial stimuli to be one-dimensional,                  
with  time  acting  as  the  second d imension.

It is plain that, in (x,y,t) space, motion corresponds to a         
spatio-temporal tilt. The faster an object moves, the            
greater its tilt. The problem of motion analysis is to            
measure the energy corresponding to these locally oriented
contours, and to use this energy in analyzing the dynamics           
of  the  scene.

In space, one can analyze orientation with a set of oriented
filters, such as Gabor functions (Gabor, 1946). The same
approach  can  be used  in  space-time.  One convolves the  input

Figure 1

with a collection of linear filters, each of which is tuned                 
to a specific region in ST frequency space. Each filter                
in this bank gives a new (x,y,t) image that has been         
selectively filtered to extract one type of spatio-temporal  
energy.

Some examples of such filters are suggested in figure 2.

Figure 2

Figure 2(a) shows, in schematic fashion, a tilted                 
spatio-temporal Gabor function, selective for leftward        
motion; fig. 2(b) shows a static one, and fig. 2(c) shows one
selective for rightward motion. The functions have the            
form of moving sinusoids windowed by a Gaussian in          
space-time:

F(x,t) = cos(ux + vt) exp(-kxx
2 - ktt

2)

where u and v determine the SF and TP respectively, and kx       
and  kt  determine  the  window  size.

Figures 2(d-f) show, schematically, the spatio-temporal        
power spectra of the Gabor functions. A Gabor function       
picks out a pair of Gaussian blobs in ST frequency space;         
the width of the blobs is inversely proportional to the              
width of the spatial window, and the locations of the blobs         
are given by the spatial and temporal frequencies of the
sinusoid.

Gabor functions are not practical for actual ST energy      
analysis because they are non-causal. We use them here          
for their mathematical convenience; more realistic ST           
filters  have  been discussed  elsewhere  (Watson and Ahumada,
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1985; Adelson and Bergen, 1985; Fleet and Jepson,             
1984)

These various filters divide the incoming spatial-temporal  
signal into a set of energy bands. If the filters are         
narrowly tuned, then it will be possible to analyze the ST
frequency content quite precisely; however these filters          
will have poor localization in space and time. In human       
vision it appears that the temporal frequency tuning is
substantially broader than is the spatial frequency tuning.
Psychophysical evidence suggests that the TF axis is           
broken up into only two or three bands, while the SF axis is
divided into seven or more bands (Watson and Robson,        
1981;  Thompson,  1984;  Bergen  and  Wilson,  1985).

    Removing        phase        and        extracting        energy.   

A linear filter gives an oscillating output that incorporates
information about phase, amplitude and frequency content.       
In order to remove the phase information, and retrieve a
simple measure of the local energy within the frequency      
band, one can use a pair of filters whose responses are 90°     
out of phase, i.e. a quadrature pair (Adelson and Bergen,
1985).

This procedure is illustrated in figure 3. The input           
stimulus is a light bar moving the right (fig. 3(a)). The
luminance profile at one instant is shown below. This        
pattern is convolved with two rightward selective               
spatio-temporal filters, one even and one odd, to produce         
the even and odd responses R0(x,t) and R1(x,t) shown in fig.
3(b) and 3(c). Each of the responses contains phase     
dependent oscillations, but they may be combined in a
quadrature sum  to  produce a rightward energy measure,

R = (R0
2 + R1

2)1/2

which is shown in fig. 3(d). Underneath each image is a        
slice at a single time (shown by the dashed line), indicating      
the amplitude of the response at each position. The      
quadrature sum makes use of the fact that sin2+cos2=1,           
and produces a phase-independent measure of local                
energy.

Figure 3

     A        visual       illusion:       the       fluted       square         wave    .

The energy-based analysis of motion leads to some       
interesting predictions about visual illusions. The "fluted     
square wave illusion, " illustrated in figure 4, is a recent     
illusion that was devised specifically as a test of such         
models  (Adelson,  1982).

Fig.4(a) shows the luminance profile of a square wave     
grating that is moved to the right in discrete jumps that             
are 90° (π/2) of the grating period, i.e. half of a bar width.      
The stimulus, then, is a stroboscopic motion stimulus: the
pattern appears at one position at time t1, then jumps to            
the next position at t2, and continues to jump rightward at
successive frames, and there is nothing unexpected in the
appearance of this stimulus: it simply looks like a square       
wave  grating  moving  to  the  right  in  90°  jumps.

Figure 4

The spectrum of the stimulus is shown in fig. 4(c); energy          
is indicated by the size of the squares at each point. By far      
the strongest motion energy in contained in the rightward
motion of the fundamental component, which shows up as        
the large squares near the origin. The perceived motion              
is  that  with  the  same  speed and direction of the fundamental.

But suppose we remove the fundamental from the grating
pattern, leaving the fluted square wave shown in fig.          
4(b). Again let the pattern jump to the right in steps that           
are 90° of the grating period. The spectrum of this           
stimulus is shown in fig. 4(d). Now the strongest          
component is that of the third harmonic. And its motion      
energy is mainly to the left (this is because it moves in         
jumps that are 270° of its period, which is the same as                  
-90°). And indeed when we look at the jumping pattern, it
seems  to  move  to  the  left,  not  to  the  right.

Note that a simple matching model would not predict this
illusion. If one matches a feature, such as an edge, to its  
nearest neighbor from one frame to the next, then one will
extract the "true," rightward motion, rather than the          
illusory  leftward  motion.

    From        energy       to        velocity.   

At a given SF, the value of an energy measure is a function       
of both the velocity and the contrast of the stimulus            
pattern. Figure 5 shows one way of deriving a velocity     
estimate  that   is  invariant   with   stimulus    contrast.  Fig.  5(a)

Figure 5

shows that  the  spectrum of a moving pattern occupies a
diagonal line in the spatio-temporal frequency domain.          
The slope of this line is inversely related to velocity. The
position of the line within a given SP band may be       
determined by comparing the outputs of a set of ST energy
detectors with different TF tunings. As shown in the           
figure, we can have three detectors, here labeled R, L, and       
S (sensitive to rightward, leftward, and static energy in the
same SF band); their relative outputs can be used to extract         
a  velocity  estimate.
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One such estimate is shown in figures 5(b) to 5(d). The
sensitivity of each detector varies with the velocity of the    
input, as shown in 5(b). Let the motion selective detectors         
be used for an opponent energy measure, R-L, as in figure
5(c).  Opponent energy measures are particularly         
interesting because they can be directly extracted by    
Reichardt detectors (Reichardt, 1961; Poggio and Reichardt,
1980; van Santen and Sperling, l984, 1985; Adelson and
Bergen, 1985). Then a monotonic estimate of velocity is the
ratio v = (R-L)/S, as shown in fig. 5(d). This estimate is
invariant  with  contrast.

    Relationships        between        ST        energy        and        gradient         methods.   

Gradient methods, like energy methods, deal with                   
low-level intensity information rather than with feature
matching. But gradient methods are quite differently     
motivated and give direct velocity estimates without the
intermediate stage of ST energy analysis. Nonetheless       
certain versions of gradient estimates turn out to be       
equivalent  to  energy  based  estimates.

As described by Pennema and Thompson (1979), velocity      
may be estimated as a ratio of temporal and spatial    
derivatives:

v = It/Ix

Pointwise velocity estimates are noisy and unreliable in      
regions of low spatial gradient. One solution is to reject  
velocity estimates when the gradient drops below some
threshold. A more elegant approach is to take a weighted      
sum over a small patch of image, where the weighting
(confidence)  is  proportional  to  Ix

2:

v = ∑x(vew)/∑x(w) = ∑x(It/Iw)Ix
2/∑x(Ix

2)

where Ve = Ix/It is a velocity estimate at a point, and w = Ix
2      

is  a  weighting  that  measures  confidence.

Lucas and Kanade (1979), in their analysis of stereo    
matching, point out that this is equivalent to the least          
squares  estimate  of  velocity,

v = ∑x Ix/It / ∑x(Ix
2)

This estimator, when fully developed, turns out to be     
equivalent to an opponent energy estimator of velocity, as       
we  will  now  show.

Figure 6 shows the steps of the gradient computation we          
will  consider:

1) Start with an input image I0(x,t) that is continuous in           
both  space  and  time.

2) Convolve it with a spatio-temporal Gaussian, G(x,t), to
remove  the  high  spatial  and  temporal  frequencies:

IG(x,t) = I0(x,t)* G(x,t)

3) Compute the spatial and temporal derivatives of that      
image,

Ix(x,t) = d/dx(IG(x,t))
It(x,t) = d/dt(IG(x,t))

4) Create a confidence image, by squaring the local spatial
derivative:

IC(x,t) = (Ix(x,t))2

5) Create a product image, by multiplying the local spatial       
and  temporal  derivatives:

IP(x,t) = Ix(x,t) • It(x,t)

6) Create spatially weighted sums on the above two           
images, i.e. convolve them with a spatial Gaussian        
weighting  function,  Gs(x),  so  that

I'C(x,t) = IC(x,t)*GS(x)
I'P(x,t) = IP(x,t)*GS(x)

7) Finally, compute the velocity nela as a the ratio of these
weighted  sums:

Vest(x,t) = I'P(x,t)/I'C(x,t)

The last panel shows the estimated velocities as arrows       
where the length of the arrow is indicates velocity, and the
brightness  indicates  confidence.

Figure 6

To discover the connection to energy models, consider the
following. The images Ix and It were derived by     
differentiating a Gaussian blurred version of thc original     
image sequence. But the combined operations of blurring       
and differentiating can be captured in a single linear           
filters, viz:

Kx(x,t) = d/dx(G(x,t))

Kt(x,t) = d/dt(G(x,t))

Now the numerator of the gradient estimator is the local        
sum  over  the  product  image  ItIx.  But  observe  that

ItIx = (I*Kt)(I*Kx),
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which  may  be  rewritten  as

= [(I*Kt + I*Kx)
2 - (I*Kt - I*Kx)

2]/4

and  thus  we  have,

4IxIt = (I*Kt + I*Kx)
2 - (I*Kt - I*Kx)

2

We now have two new filters, the sum and difference        
filters,  which  we  may  label,

KR = Kt - Kx

KL = Kt + Kx

so  that  the  equation  may  be  written,

4IxIt = (I*KL)
2 - (I*KR)2

Thus, the product image looks suspiciously like an          
opponent energy image. The suspicion is confirmed when           
we  observe  that  the  kernels,

KR = d/dtG(x,t) - d/dxG(x,t)
KL = d/dtG(x,t) - d/dxG(x,t)

are Gaussian derivatives, tilted diagonally in the (x,t)       
domain. The kernels, along with their spectra, are          
illustrated  in  figure 7.

Figure 7(a) shows the kernel Kt; fig. 7(b) shows Kx. These     
are the kernels that are used in the gradient computation.        
But their product can be expressed as the difference of the
squares of the two ST oriented kernels, KR and KL, shown in
figures 11(c) and 11(d). The corresponding spectra are      
shown  in  fig.  7(e-h).

Thus the numerator in the gradient procedure is a local         
sum over an opponent motion energy. The denominator,
∑(I*Kx)

2,   is   a   local   sum  over   static   energy.    Thus   the

gradient procedure, as formulated here, is equivalent to an
opponent energy estimate of velocity. To be specific, we      
have  a  correspondence  of  the  form

( * )( * )

( * )

( )I K I K

I K

R L

S
t xx

xx

∑
∑

= −
2

where  R,  L, and S are energy measures.

Furthermore, observe that the pre-filter function G(x,t)          
used in the above derivation, could be replaced by any ST
kernel. For example the prefilter could be bandlimited in     
space and/or time, thus achieving a greater specificity for        
ST  energy.

Figure 8 shows the kernels that are involved if one starts        
with  a  prefilter  of  form

Gxt(x,t) = d/dx (d/dt G(x,t))

where G(x,t) is a spatio-temporal Gaussian. The spatial           
and  temporal  derivatives  then  become,

Gxxt = d2/dx2(d/dt G(x,t))

Gxtt = d2/dt2(d/dt G(x,t))

These kernels are shown in figure 8(a) and (b). The sum        
and difference kernels are shown in 8(c) and (d). Observe     
that these new kernels are beautifully oriented, and closely
resemble Gabor functions. The spectra of these kernels          
are  shown  in  figs.  8(c-h).

    Seeing       two         motions       in        one        place:   

It is possible to see two different motions in the same place       
at the same time. This is especially true if the one motion
involves high spatial frequencies and the other involves          
low spatial frequencies (Adelson and Movshon, 1982). To a
lesser extent it is true when the two motions involve         
different  temporal  frequencies.

Thus humans do not always extract a single overall          
velocity flow field, but can simultaneously extract two or     
more, corresponding to different ranges of spatial and  
temporal  frequency.

Figure 9

Machines can do the same if they extract motion in       
numerous finite ST energy bands (cf. Fleet and Jepson, l984).
An example is shown in figure 9(a), which shows                     
the ST spectrum of a scene that includes two different       
moving patterns --- for example a man walking to the left          
in a snowstorm that is blowing to the right. The man's ST
energy is concentrated in the low frequencies, while the
snowstorm spreads out into the high frequencies. Motion
analyzers tuned to different domains, as in figure 9(b), can
offer separate information about these different frequency
bands, and thus produce two or more flow fields
simultaneously.
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    C-flicker        and        opponent         motion:              two        axes        of        ST        energy.   

To complete the picture of ST energy analysis, one must
consider a second sort of ST energy: counterphase flicker       
(c-flicker). When leftward and rightward gratings (of the   
same SF and TF) are added together the leftward and
rightward sensations vanish, leaving only the sensation of            
a flickering grating. Figure 10(a) illustrates the space of     
stimuli that can be generated by adding together leftward        
and  rightward  gratings  with  various  contrasts.

Figure 10

It appears that the visual system transforms the original          
axes into new perceptual axes  as shown in figure 1(b).

One axis is the (R-L) opponent energy axis, the other is the
(R+L) c-flicker axis. The white area shows the region of
physically realizable simuli the grey area shows stimuli           
that would involve negative energy and are therefore
unrealizable.

Although c-flicker is rarely discussed as a significant
perceptual variable, humans can be quite sensitive to it. In  
some conditions subjects can detect c-flicker perturbations
whose contrast is as small as 0.1% (Bergen and Adelson,
1985). This great sensitivity suggests that c-flicker may be
perceptually  useful.

C-flicker will, of course, be present in "busy" stimuli such          
as fluttering leaves or boiling water. But it will also be        
strong at dynamic occlusion boundaries, where one object         
is moving over another. Thus c-flicker may be a helpful          
cue  in  the  segmentation  of  dynamic  scenes.

    Conclusions   

In recent years, a number of models for human motion
processing have been proposed in which the early stages
contain filters that select out restricted bands of the            
spatio-temporal spectrum. In the space-time domain, the       
filter kernels have a spatio-temporal "orientation" that      
matches the ST orientation of moving stimuli. In the ST
frequency domain, the power spectra of these kernels are         
pairs  of  blobs  along  a  diagonal.

By combining the outputs of units in quadrature one can     
obtain a non-oscillating measure of local motion energy. A
measure of static energy can be similarly obtained. The         
ratio of opponent and static energy, (R-L)/S, can be used             
as a measure of velocity within a given frequency band.
Gradient methods for machine vision, while motivated
differently,  turn  out  to  perform  a  similar  computation.

The primary perceptual axes for dynamic scenes are    
opponent motion (i.e. R-L) and counterphase flicker (i.e.
R+L). Humans are highly sensitive to small variations               
in c-flicker but the utility of this infomation is rarely      
discussed. Since c-flicker can be particularly strong at  
dynamic occlusion boundaries, we suggest that it may be      
useful  in  segmenting  dynamic  scenes.
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