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ABSTRACT

Physical surfaces such as metal, plastic, and paper possess different optical qualities that lead to different character-
istics in images. We have found that humans can effectively estimate certain surface reflectance properties from a
single image without knowledge of illumination. We develop a machine vision system to perform similar reflectance
estimation tasks automatically. The problem of estimating reflectance from single images under unknown, complex
illumination proves highly underconstrained due to the variety of potential reflectances and illuminations. Our so-
lution relies on statistical regularities in the spatial structure of real-world illumination. These regularities translate
into predictable relationships between surface reflectance and certain statistical features of the image. We determine
these relationships using machine learning techniques. Our algorithms do not depend on color or polarization; they
apply even to monochromatic imagery. An ability to estimate reflectance under uncontrolled illumination will further
efforts to recognize materials and surface properties, to capture computer graphics models from photographs, and to
generalize classical motion and stereo algorithms such that they can handle non-Lambertian surfaces.
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1. INTRODUCTION

A human observer differentiates between a mirrored surface and a white matte surface effortlessly at a single glance.
While most people take this ability for granted, the task is nontrivial from a computational point of view. Figure
1 shows two images of each of four different spheres. Because each sphere was photographed under two different
illumination conditions, pixels in one image of a given sphere are quite different from corresponding pixels in the
other image of the same sphere. In principle, all four spheres could be perfect chrome reflectors. Because a mirror
simply reflects its illumination environment, a properly illuminated chrome sphere could produce an image identical
to that of a white matte sphere.

Despite this ambiguity, humans easily recognize that the images in each column represent spheres of similar
materials, while the images in different columns represent objects of different materials. In fact, recent psychophysical
work has shown that humans are capable of much more subtle distinctions in reflectance properties on the basis of
images of isolated surfaces which provide no independent information about illumination.1 Presumably the human
visual system relies on prior information in order to conclude that, although each image could be achieved through
several combinations of surface reflectance, environmental illumination, and surface geometry, some explanations
are much more likely than others. This paper establishes a statistical framework for reflectance estimation under
unknown, real-world illumination.

Several practical applications in computer vision and graphics motivate our efforts. First, an ability to estimate
reflectance under unknown illumination facilitates visual material recognition, because different physical surfaces such
as metal, plastic, and paper possess different optical reflectance properties. Second, reconstruction of a scene from
photographs for computer graphics requires inference of both the geometry and the reflectance of visible surfaces.
Third, an ability to estimate reflectance from image data under unknown lighting conditions may help overcome the
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Figure 1. The two rows show photographs of the same four spheres under two different illuminations. Each sphere
possesses distinct reflectance properties which a human can recognize under different illuminations: (A) shiny black
plastic, (B) chrome, (C) rough metal, (D) white matte paint.

limitations of shape-from-shading algorithms which assume that reflectance is known in advance, and of classical
algorithms for motion or stereo estimation, which assume Lambertian surface reflectance.

The importance of reflectance models in computer graphics has motivated several researchers to develop image-
based reflectance estimation techniques. Tominaga et al.2 present a method for estimating Phong model parameters
from an image of a uniform cylindrical surface. They require illumination by a point light source, although they
estimate the exact location of the light source from image data. Sato et al.3 as well as Marschner4 develop similar
techniques which accommodate a more general geometry acquired through laser range scanning. These methods,
unlike ours, do not apply to photographs taken in the natural world under complex lighting conditions.

The inverse global illumination techniques of Yu et al.5 and Yu and Malik6 do handle reflectance estimation
without fully specified illumination, but with input data requirements much greater than those of the methods
in this paper. Given a collection of photographs of a local scene (and, when appropriate, a light probe image
representing illumination from distant sources), the inverse global illumination algorithm iteratively estimates both
the illumination and reflectance of every surface patch in the local scene. This requires a collection of photographs
representing all surfaces which cast light upon the surfaces of interest, and in which all the primary light sources are
identifiable. Our approach, on the other hand, requires only an image of the surface whose reflectance is in question.
We avoid estimating illumination explicitly by characterizing it statistically.

We estimate reflectance from single monochrome images of the surface of interest, without using contextual cues
from the surrounding image. In practice, a computer vision system may combine a number of cues to estimate
reflectance properties. Color spectral techniques can separate specular and diffuse reflectance components for di-
electrics.7,2 Motion cues differentiate between diffuse and specular reflectance. Visual context provides partial
information about illumination conditions. We have found, however, that humans can effectively estimate certain
surface reflectance properties even in the absence of these cues.1 We chose to work with single, monochrome images,
because we wish to determine what information the basic image structure captures about reflectance. Our tech-
niques could be improved by drawing on additional sources of information. We simplify the problem at this stage by
assuming that the surface under observation has homogenous reflectance properties and that its geometry is known.

We begin by defining the problem of reflectance estimation under unknown illumination mathematically and
showing that this problem is ill posed (Section 2). We then examine available prior information about real-world
reflectance and illumination (Section 3). In particular, the spatial structure of real-world illumination possesses
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Figure 2. A surface patch with normal N. The BRDF is a function of light source direction S and view direction V.

strong statistical regularities akin to those studied in the natural image literature. We develop a method for using
this information to classify images according to surface reflectance (Section 4). Finally, we demonstrate reflectance
estimation results on both real and synthetic images (Section 5).

2. MATHEMATICAL PROBLEM STATEMENT

The reflectance of an opaque surface patch can be described as a bidirectional reflectance distribution function
(BRDF), which specifies what proportion of the light incident from each possible illumination direction is reflected in
each possible view direction. Figure 2 shows a surface patch with normal N illuminated by a light source in direction
S and observed by a viewer in direction V. In a three-dimensional world, two angles are necessary to uniquely specify
S and two more to specify V. Hence the BRDF is a function of four continuous angular variables, specifying the ratio
of the reflected radiance in a particular direction to incident irradiance from a differential solid angle centered on
the incident direction. We denote it by f(θi, φi; θr, φr), where θi and θr are the angles of S and V, respectively, from
the surface normal N, and φi and φr are their respective azimuthal angles. We wish to estimate f from an observed
image.

Given the BRDF of a surface patch and the illumination incident on it from every direction in a hemisphere
surrounding its normal, we can compute its apparent brightness to a viewer. If I(θi, φi) gives the radiance of
illumination incident from direction (θi, φi), the total reflected radiance of the surface patch in the view direction
(θr, φr) is given by8 ∫ 2π

φi=0

∫ π/2

θi=0

f(θi, φi; θr, φr)I(θi, φi) cos θi sin θidθidφi. (1)

This expression highlights the ill-posed nature of the reflectance estimation problem. We wish to estimate the BRDF,
a continuous function of four variables, from a single image of the surface. Each pixel of the image depends not
only on the BRDF, but on the unknown illumination, a function of two variables which may differ from one point
on the surface to another. The observed image is a function of only two variables. Even assuming that geometry
is known and that the BRDF is the same at all points on the surface, the unknowns occupy a much larger space
than the observations. In order to choose the most likely reflectance given the observed image, we must exploit prior
information on real-world reflectance and illumination.

3. STATISTICAL PRIOR INFORMATION

3.1. Reflectance
Basic physics requires that the BRDF of a passive material be normalized, meaning that for any irradiation, total
reflected energy is less than or equal to total incident energy. A physical BRDF must also satisfy the reciprocity
principle, which guarantees symmetry between incident and reflected directions (f(θi, φi; θr, φr) = f(θr, φr; θi, φi)).
The space of physically realizable BRDFs remains huge, including rare reflectances such as those of holograms.

In the real world, some reflectances are far more common than others. An ideal reflectance estimator would
exploit a probability distribution over the entire space of realizable BRDFs. Unfortunately, we lack the data to
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formulate such a distribution. Instead, we rely on one of two cheaper alternatives. The examples of Section 5 assume
that, given a finite but arbitrary set of candidate reflectance functions, we wish to identify which one most closely
represents an observed surface. This simplification reduces the infinite-dimensional estimation problem to a discrete
classification problem.

Alternatively, one might restrict the reflectances under consideration to those characterized by a parametric model
from computer graphics. One must then estimate the parameter values that most closely match the reflectance
properties of the observed surface. This approach reduces the estimation problem to a regression problem in a finite
number of variables. Although no existing parametric model captures all real-world reflectances accurately, computer
graphics researchers have painstakingly designed models to produce reasonable rendering results for most materials.
We have worked primarily with Ward’s isotropic reflectance model,9,10 which takes the form

f(θi, φi; θr, φr) =
ρd

π
+ ρs

1√
cos θi cos θr

exp[− tan2 δ/α2]
4πα2

, (2)

where δ is the angle between the surface normal and a vector bisecting the incident and reflected directions. The free
parameters of this model are ρd, the fraction of incident energy reflected by the diffuse (Lambertian) component,
ρs, the fraction of energy reflected by the specular component, and α, surface roughness measured as the standard
deviation of surface slope. Higher α implies a more blurred specular component.

3.2. Illumination

In principle, illumination could vary almost arbitrarily from one point on a surface to another. In practice, however,
the illuminations of two nearby surface points are usually similar. In fact, if all sources of direct and indirect
illumination are sufficiently distant and the surface is convex, one can represent surface illumination by a single
spherical map defining the intensity of light incident from each real-world direction. The illumination of each surface
patch is then given by a hemisphere of this global map. One can conveniently capture a spherical illumination map
for any point in the real world photographically using a fisheye lens or a mirrored ball. Debevec’s Light Probe Image
Gallery11 consists of several illumination maps acquired with high dynamic range from a combination of photographs
at multiple exposures. Under the distant illumination assumption, one can use such an illumination map to render
an object as it would appear at that location.12

The brightness of a point on a convex surface under distant illumination depends only on the local surface
orientation. Hence an image of the surface determines a relationship between surface orientation and observed
radiance for a particular illumination condition. One can therefore apply similar reflectance estimation techniques
to any convex object whose geometry is known or measured in advance. We have chosen to illustrate our techniques
using spheres because we can capture their geometry precisely from image contours.

Photographically acquired real-world illumination maps possess a great deal of predictable statistical structure in
the frequency and wavelet domains. This observation about illumination parallels a growing body of research which
has demonstrating that “natural” images in both outdoor and indoor environments possess predictable statistical
structure. For example, two-dimensional power spectra tend to fall off as an inverse power of frequency, varying
little from image to image.14 Wavelet domain analysis has proven particularly powerful in capturing natural image
structure. Distributions of wavelet coefficients at any given scale and orientation are heavy-tailed, falling off much
more slowly than a Gaussian distribution.15 The variance of wavelet coefficient distributions tends to increase in
a geometric sequence as one moves to successively coarser scales. Joint distributions of wavelet coefficients across
scales capture further statistical structure.16 Figure 3 illustrates some of these wavelet domain characteristics for
two illumination maps.

Figure 4 shows synthetic images of two identical spheres under different illuminations. Surface reflectance is more
easily identified in image B, rendered under a photographically acquired illumination map, than in image A, rendered
under point source illumination. Comparison of photographs of a sphere in a normally illuminated room and in a
black room with a point light source reveals the same effect. The simplicity of point source illumination violates the
statistical regularities of typical natural images. Most previous work in reflectance estimation has considered the
case of point source illumination as a convenient starting point. We wish instead to take advantage of the statistical
complexity of natural illumination in estimating reflectance.
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Figure 3. Distributions of wavelet coefficients at one orientation for three successive scales, with scale 1 being
the finest, for (A) an indoor illumination map (Galileo’s tomb) and (B) an outdoor illumination map (eucalyptus
grove), both from Debevec.11 All the distributions have a characteristic heavy-tailed form, with variance increasing
at coarser scales. These distributions were computed as histograms of bands of a nine-tap quadrature mirror filter
wavelet pyramid13 constructed from an unwrapped annulus of Debevec’s high dynamic range images (see Section
4.2).

A B

Figure 4. (A) A sphere rendered under illumination by a point light source, with reflectance specified by Ward
model parameters ρd = 0.083, ρs = 0.097, α = 0.03. (B) The same sphere rendered under photographically acquired
illumination.
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4. A METHOD FOR REFLECTANCE CLASSIFICATION

4.1. Bayesian formulation

The ideal Bayesian approach to reflectance estimation would involve marginalizing over all possible illuminations to
find the most likely reflectance for a given observed image:

ν̂ = arg max
ν

P (ν|R) = arg max
ν

P (ν)
∫

I

P (I)P (R|ν, I)dI, (3)

where ν denotes the parameters of a reflectance function, I denotes illumination as a function of direction, and R
denotes the observed image radiance as a function of surface orientation.

Unfortunately, even if one could formulate the prior probability of any given illumination map P (I) explicitly,
integration over all possible illuminations is computationally intractable. Replacing the integration with a maximum
over illuminations will lead to incorrect reflectance estimates. Consider a photograph of a white matte sphere,
corrupted by slight high-frequency imaging noise. One could explain this image approximately as a white matte
sphere under any of a number of illuminations, but none of these would predict the noisy image exactly. On the
other hand, one could explain the photograph precisely as a chrome sphere under just the right illumination. Thus
the single most likely combination of reflectance and illumination might indeed involve a chrome sphere. Integrating
over all possible illuminations, however, would reveal that a more likely reflectance is white matte, because for
that reflectance a large number of illuminations produce approximately the observed image. Joint estimation of
illumination and reflectance, even when feasible, may fail to identify the most likely reflectance. This argument
parallels Bayesian approaches such as Freeman’s generic viewpoint assumption.17

4.2. A machine learning approach

Practical reflectance estimation requires a method to leverage the statistical regularity of real-world illumination while
avoiding integration over all possible illuminations. Our approach applies machine learning techniques to determine
relationships between image features and reflectance. Intuitively, the feature set should capture notions such as the
presence or absence of edges, which we associate with the presence or absence of a sharp specular component because
natural illumination maps generally contain sharp edges. Inspired by the observations of Section 3.2 on real-world
illumination statistics and by work in texture modeling,18,19 we chose features based on statistics of the distributions
of wavelet coefficients at different scales and orientations, as well as the distribution of pixel intensities in the original
image. Heeger and Bergen18 based their texture representation on distributions of wavelet coefficients and pixel
intensities.

Previous work in texture analysis and natural image statistics has assumed stationary image statistics. An image
of a sphere will possess nonstationary image statistics because a perspective or orthographic projection will compress
features near the edges. One could reduce these effects by considering radiance to be a function of orientation and
performing the analysis in a spherical domain∗, using spherical wavelet transforms.20 We have chosen initially
to simply warp the observed image into one with more nearly stationary statistics. In particular, our algorithm
extracts an annulus of the spherical image and unwraps it into a rectangle using a polar-to-rectangular coordinate
transformation (Figure 5).

A two-dimensional pyramid is constructed from this warped image using nine-tap symmetric quadrature mirror
filters.13 We then compute histograms to approximate the distributions of pixel intensities in the original image and
the distribution of wavelet pyramid coefficients at each scale and orientation. Each distribution is characterized by a
set of numerical statistics including mean, variance, skew, kurtosis, and the 10th, 50th, and 90th percentiles. Figure
5 summarizes feature computation as a flowchart.

Finally, we determine experimentally which of the computed statistics are meaningful and use them to build a
classifier. We chose support vector machines (SVMs) for classification because they tend to generalize well given a
limited number of training samples and a large number of features.21 Our implementation utilizes the SVMTorch

∗Even when the image is defined as a function on the sphere instead of the plane, its statistics are not stationary. Consider
a typical reflectance function consisting of a diffuse and a specular component. A localized light source contributes most to
the diffuse component for a surface patch whose normal is in the light source direction. The same light source contributes
most to the specular component for a surface patch whose normal bisects the light direction and the view direction. Even if
illumination is isotropic, image statistics will vary spatially.

6



Original image Unwrapped annulus Wavelet pyramid

Pixel intensity histogram Histograms of coefficients 
(one histogram per subband)

Statistics of one histogram Statistics of each histogram

Reflectance estimate

Figure 5. Flowchart for computation of image features, which applies to both testing and training of the classifier.
The features are histogram statistics, computed on the original image and on its wavelet transform.

software22 with Gaussian kernels to train and apply SVM classifiers. Although this paper only presents classification
results, the SVM approach generalizes naturally to regression on reflectance parameters. Section 5 further discusses
our choice of specific features.

Because our analysis techniques rely solely on the image of the surface of interest, they suffer from ambiguity
between the overall strength of illumination and the overall lightness of the surface. A white matte sphere under
dim illumination and a gray matte sphere under bright illumination will produce identical images. Resolution of
this ambiguity requires contextual information from the remainder of the image or scene. Because color constancy
and lightness estimation have been studied separately,23,24 we eliminate this problem from the current study by
normalizing our images for overall strength of illumination, as measured by the brightness of a standard white surface
positioned perpendicular to the viewer at the position of the surface under observation.

We train a classifier using either photographs, or synthetic images rendered under photographically acquired
illumination maps. Synthetic images have the advantage that the surface BRDF is known exactly. To create
synthetic images, we used Ward’s Radiance package,10 which efficiently implements the Ward reflectance model.
Our rendering methodology parallels that of Debevec.12 When working with synthetic images, our machine learning
process treats the rendering machinery as a black box, using only the final rendered images in the training process.

5. RESULTS

5.1. Synthetic Images

We trained classifiers on synthetic images of spheres of six known reflectance properties. The six reflectances were
specified by Ward model parameter settings chosen to correspond to common materials of distinctly different appear-
ances. Each sphere was rendered under nine illuminations specified by Debevec’s high dynamic range light probes.11

These illumination maps represent diverse lighting conditions from four indoor settings and five outdoor settings.
Each sphere was rendered from a view angle midway between a top view and a horizontal view. The resulting
renderings were converted from Radiance’s native high dynamic range format to floating point images for further
processing. Figure 6 shows a sample rendering of each sphere, together with the Ward model parameters for each.

To test the accuracy of classification based on different combinations of statistics using only a small total number
of data points, we performed a variant of leave-one-out cross-validation. We classified the six images corresponding
to each illumination using a classifier trained on the images corresponding to the other eight illuminations. By
repeating this process for each of the 9 illuminations, we obtained a total of 54 test cases, one for each rendered
image.
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A (black matte) B (black shiny) C (chrome)

D (gray shiny) E (white matte) F (white shiny)

Figure 6. Rendered spheres used in classification experiments. All are shown under the same illumination map.
Ward model parameters are as follows: (A) ρd = .1, ρs = 0, (B) ρd = .1, ρs = .1, α = .01, (C) ρd = 0, ρs = .75,
α = 0, (D), ρd = .25, ρs = .05, α = .01, (E) ρd = .9, ρs = 0, (F) ρd = .7, ρs = .25, α = .01.
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Figure 7. A classifier trained on two features. Solid symbols indicate locations of training samples, as specified by
the legend. Lines separate the regions which the classifier assigns to different reflectances. The pair of images on the
left-hand side of the figure show a chrome sphere incorrectly classified as gray shiny, and the correctly classified gray
shiny sphere falling closest to it in the space defined by these two statistics. Similar, the image pair on the right-hand
side include a white shiny sphere incorrectly classified as white matte, and a white matte sphere which falls close to
it. The vertical axis measures the variance of wavelet coefficients of the warped image at the second-finest horizontal
scale.

Classification based on five or more statistics produced accuracies as high as 53 of 54 correct. For the purposes
of visualization, Figure 7 illustrates the behavior of a classifier based on only two image statistics. The horizontal
axis denotes the 10th percentile of the distribution of pixel intensities in the original image of the surface, which
corresponds roughly to the strength of the diffuse component of reflectance (ρd). Most illumination maps contain
regions of low illumination, where the specular component contributes little to observed radiance. The darkest areas
of the observed sphere therefore prove indicative of its diffuse reflectance. The classifier’s second statistic, on the
vertical axis of Figure 7, is the variance of a particular wavelet subband. This variance provides a measure of the
power in an oriented frequency band in the unwrapped image. Surfaces with brighter, sharper specular components
(high ρs and low α) tend to score higher on this axis.

When classification based on these two statistics is tested using the cross-validation techniques described above,
6 of 54 samples are classified incorrectly. Even the classifier of Figure 7, trained on all 54 samples, misclassifies three
of these samples. Two misclassified images are shown in the figure, together with the closest correctly classified
images in the space defined by the two statistics. Although such confusions might be expected from a classifier using
only two statistics per image, humans could classify these images correctly, largely by noting the distinctness of the
sharpest edges in the misclassified examples.

Adding statistics based on the kurtoses of distributions of wavelet coefficients, a rough measure of the prevalence
of sharp edges in the image, substantially improves classifier performance. Including ratios of variances of wavelet
coefficients at different scales also helps. Through experimentation on several image sets, we settled on a classifier
using 6 statistics: the mean and 10th percentile of the original unwrapped image, the variance of coefficients in the
finest and second-finest radially (vertically) oriented subbands, the ratio of these two variances, and the kurtosis of
the second-finest radially oriented subband. Cross-validation using this choice of statistics gives an accuracy of 53
out of 54 correct (98%).
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Figure 8. Photographs of the 9 spheres used for the reflectance classification experiment, all under the same
illumination. The classification algorithm uses image data only from the surface itself, not from the surrounding
background.

5.2. Photographs

We trained and tested a second set of classifiers using images of spheres captured with a Nikon D1 digital camera.
Spheres of 9 different materials were photographed under 7 diverse illumination conditions, including both indoor
and outdoor settings. Figure 8 shows the 9 spheres under one particular illumination. Images were acquired in 24-bit
RGB format and then converted to 8-bit gray scale images for further processing.

Cross-validation of classifiers based on the set of six statistics chosen in Section 5.1 yielded 59 correctly classified
samples out of 63 images (94% accuracy). An uninformed random choice in such a 9-way classification task would be
11% accurate. Classification based only on the image mean, normalized for overall strength of illumination, yielded
44% accuracy. Given that each classifier was trained using photographs from only 6 illuminations, 94% accuracy is
surprisingly high. In fact, one of the authors misclassified more images than the algorithm.

Figure 9 summarizes the illumination conditions used for each set of photographs by displaying chrome spheres
under each illumination. Only one illumination (E) was created by the photographer particularly for the purpose
of collecting these photographs. Interestingly, illumination E accounted for 2 of the 4 errors in the cross-validation
process. Images under this illumination also proved most difficult for humans to classify, lending credence to the
claim that the statistical regularity of “natural” illumination plays an essential role in reflectance estimation.

6. CONCLUSION

This paper formulates the problem of reflectance estimation under unknown illumination, presents a framework for
solving this problem using the statistical regularity of real-world illumination, and illustrates preliminary results for

10



A B C D

E F G

Figure 9. Chrome spheres representing the 7 illumination conditions under which each of the 9 spheres was
photographed.

both synthetic images and photographs. Further work will improve the performance of our reflectance estimator
and apply it in a more practical setting. First, we plan to apply our estimator to surfaces other than spheres.
Our method generalizes naturally to surfaces of other convex geometries, because under the assumption of distant
illumination, the observed brightness of a surface patch depends only on its orientation relative to the viewer. Second,
we will investigate principled manners to choose the best statistics for classification from the family defined by the
distributions of pixel intensities and wavelet coefficients. Third, we hope to utilize additional statistics capturing
dependencies of wavelet coefficients across scales, which are known to be significant characterizing of sharp edges
and in the modeling of both natural imagery and texture.19,16
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