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   The problem of interpreting images in terms of their
shading and reflectance components has traditionally been
addressed as an early vision task in a simple 2D Mondrian
domain. Recently it has been appreciated that in a 3D
world, such conventional approaches are inadequate; more
sophisticated strategies are required. One such strategy has
been proposed by Sinha [22, 25], who has addressed the
problem as a mid-level vision task rather than as a purely
low-level one. Sinha suggested that a key computation that
needs to be performed for interpreting images acquired in a
3D domain is the verification of the consistency of image
shading patterns and the likely 3D structure of the scene.
This is the problem we have addressed in the present paper.
Considerations of robustness and generality have prompted
us to discard available quantitative techniques in favor of a
qualitative one. The two prime attributes of our technique
are its use of qualitative comparisons of gray-levels instead
of their precise absolute measurements and also its doing
away with the need of an exact pre-specification of the
surface reflectance function. We show that this idea lends
itself naturally to a linear-programming solution technique
and that results obtained with some sample images are in
conformity with human perception.

1. INTRODUCTION:

   Why is it that some images (such as figure 1(a)) appear
to depict 'properly' shaded 3-D objects while others (such as
figure 1(b)) give the impression of flat painted structures?
It has recently been suggested that the percept obtained
depends on the ‘consistency’, or lack thereof, of the gray-
level patterns in the image and the likely 3-D structure of
the underlying scene [22,25]. In other words, a pattern of
gray-levels is interpreted as ‘shading’ if it can be produced
by illuminating a uniform albedo 3-D structure with a
single distant light-source (see [21] for a justification of the
single source assumption). The considered 3-D structure
must, of course, be projectionally consistent with the 2-D
geometric configuration of the gray-level pattern. Of the
infinitely many 3-D structures consistent with the pattern’s
geometric structure, we restrict our attention to those that
are perceptually likely (characteristics of perceptually likely
3-D structures are discussing in [23,24]).
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(a) (b)
Figure 1. Two figures that have identical geometric
structures but very different interpretations. Figure (a) is
perceived to be a shaded 3-D truncated hexagonal pyramid
while figure (b) appears to be a flat pattern of paint.

   If the gray-level pattern cannot be produced simply by
illuminating a ‘perceptually likely’ uniform albedo 3-D
structure, then the hypothesis of spatial variation of
reflectance needs to be invoked. In such a situation, we
suggest, the image will appear to depict a pattern of paint.

   From the discussion above, it is apparent that a method
for interpreting gray-level patterns needs to perform two
conceptually different tasks:

1. it needs to recover a set (possibly singleton) of
perceptually likely 3D structures consistent with the
geometric structure of the input pattern, and

2.it needs to verify whether (any of) the recovered
3D structures can be illuminated with a single
distant light source so as to produce a gray-level
pattern equivalent to the input pattern. This, in
essence, is an attempt to determine whether the
variations in image gray-levels are due to shading or
changes in intrinsic surface reflectance.

   Figure 2 shows this two part strategy. Schemes for
accomplishing task 1 have been described in [8, 22, 24]. In
section 3, for the sake of completeness, we provide a brief
account of our solution to this problem. The main focus of
this paper is, however, task 2. Beginning with section 4,
we present a discussion of the inadequacies of existing
quantitative approaches and propose a qualitative solution
technique for this task.
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Figure 2. (a) Phase I of the proposed strategy involves
deriving the likely 3-D structure(s) corresponding to the
geometric configuration of the image. (b) Phase II of the
strategy verifies consistency of the shading pattern in the
image and the recovered 3-D shape. This involves
determining whether the 3-D shape can be illuminated by a
single distant light source to yield the shading pattern
observed in the original image.

2. THE WORLD MODEL:

   The domain we shall be concerned with in this paper
comprises of painted polyhedral/origami objects such as
those shown in figure 3. We assume an absence of cast
shadows. The surfaces shall be assumed to be qualitatively
matte without necessarily being precisely Lambertian. The
scene shall be assumed to be illuminated with a diffuse
ambient and a single distant light source.

 
                              

Figure 3. Sample objects from our domain of interest.

3.  DERIVING 3-D SHAPES FROM 2-D
LINE-DRAWINGS:

   As stated earlier, our aim here is to interpret 2-D line-
drawings extracted from the input gray-level patterns in
terms of their perceptually/physically likely 3-D structures.
The difficulty of this task arises from its highly
underconstrained nature; any planar line-drawing is
geometrically consistent with infinitely many 3-D
structures, as shown in figure 4. In light of this
observation, two questions that need to be addressed are:
1.what distinguishes the 'correct' 3-D structure from the
rest?, and 2.how might we search for the 'correct' structure

in the infinite space of all possible 3-D structures
consistent with the given line-drawing?

                x
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z

Figure 4.  Any planar line-drawing is geometrically
consistent with infinitely many  3-D structures.

    It has long been suggested that the distinguishing
characteristic of a perceptually favored 3-D interpretation is
its low 'complexity'. The variance of the included angles
has been proposed as a measure of complexity [2, 19];
minimizing this metric leads to perceptually correct
interpretations for many line drawings. However, we find
that using this metric alone results in unexpected and
bizarre interpretations for certain figures (see figure 5). We
propose that to properly characterise the perceptually
'correct' interpretations, three types of measures are
required: angle variance, planarity of faces and overall
compactness; we wish to obtain that 3-D configuration
which, while having planar faces is maximally regular and
compact so as not to require excessive foreshortening of
any line segment to relate it to the input 2-D drawing. A
similar suggestion was made in [8].

(a) (b)

Figure 5. Perceptually incorrect shapes recovered from the
input line-drawings by Marill's algorithm. The shapes are
shown as states of a 'beads-on-wires' model. The 'wires' are
aligned to the line-of-sight and the positions of the beads
represent the depth values associated with each vertex.

    The question of how to search for the desired
configuration in the infinite search-space of all possible
configurations is a tricky one. Traditional approaches
usually involve formulating and then optimizing a
composite cost function (such as a weighted sum of the
relevant metrics [8]). This approach suffers not only from



the need to make ad hoc choices for the relative weights but
also has the same drawbacks that regularizing techniques
have, viz., the constructed cost-function might not
represent the original problem. Also, the parameter values
that might be appropriate for one problem instance might
be inappropriate for another.
    Our search strategy belongs to the class of 'greedy'
optimization algorithms [5]. Here we give only a
conceptual description and refer the reader to [24] for a
formal treatment of the same. Imagine that one is given a
2-D line drawing that one wishes to derive the maximally
regular planar 3-D shape of. What kinds of intermediate
stages should one expect to pass through on way to the
final configuration? One natural way of getting to the
desired shape is to incrementally modify the originally
planar configuration so that at every intermediate step the
most regular planar faceted configuration is obtained. This
can be thought of as doing gradient descent in regularity
space where the points considered in the space correspond
to the different planar-faceted 3-D configurations. The first
local minima reached in this fashion is reported as the
recovered 3-D shape. This strategy does not require the
construction of one composite cost function from different
metrics. Besides obviating the need for ad hoc choices of
parameters, this also has the desirable result of having the
same algorithm work unchanged on all problem instances.
Figure 6 shows two sample results.

Figure 6. Two examples of 3-D shape recovery using
constraints of regularity, planarity and compactness.

4. CHECKING SHADING CONSISTENCY:

   The problem of checking for the consistency of
shading may formally be stated as follows: Given a 3-D
shape and a 2-D gray-level image (which is already known
to be geometrically consistent with the 3-D object), we
need to determine whether there exist any light source
directions that would completely account for all gray-level
variations in the image without having to invoke the
hypothesis of surface reflectance changes. If not, then we
would like to know which edges cannot be accounted for
simply by illumination variations.
   Given a 3-D structure and the gray-levels associated with
each of its faces, the problem of determining the source
direction under the assumption of a precisely specified

reflectance function does not seem too difficult. Indeed,
closed-form solutions for this task have already been
described [12, 21, 26]. These methods, however, have some
fundamental limitations. We highlight these limitations
below with the aid of an example.

4.1 Quantitative techniques for illuminant
direction computation - an example:

   Let us assume that the surfaces of the object considered
satisfy the Lambertian reflectance model, i.e. the brightness
E of a surface whose normal is inclined ß degrees with
respect to the incident light direction is µ cos(ß).

(ps, qs, -1) (pl, ql, -1)
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Figure 7.   Under the Lambertian reflectance model,
knowledge of the surface normal and the brightness E of
the surface constrains the set of valid light directions to lie
on a cone with a half angle of arc cos (E).

µ is the surface albedo and for simplicity is assumed to be
unity. It is clear then, that knowing the orientation of the
surface normal and the precise brightness of the surface, the
set of valid light directions define a cone with a half angle
of ß (where ß = arc cos (E)) as shown in figure 7. Now
consider a multifaceted polyhedral object. Assume that the
normal vector and measured brightness of surface i are ni

and Ei  respectively. Each facet then defines a cone of valid

light directions. To determine whether there exists a light
source direction that can simultaneously account for the
measured brightnesses of all the surfaces, we need to verify
whether the cones associated with each surface have any
common directions. The idea is easier to understand in
gradient space where a cone of directions maps to a 2-D
curve. Thus, for the case of a 'sliced-cube' shown in figure
8, we have four curves (see figure 10) and depending on
whether or not they have a common point of intersection,
the shading pattern observed in the 2-D image should be
reported as consistent or inconsistent with the 3-D shape.
Despite the reasonableness of the ideas so far, we can begin
to see some chinks in the armor of such an approach.



 
Figure 8. A ‘sliced-cube’.

   The major limitation of the quantitative approach is its
critical dependence on precise measurements of image
brightnesses. To understand why this is a limitation,
consider an object with four faces (such as the 'sliced-cube'
of figure 5) with surface normals n1, n2 , n3 , and n4 and

let the light direction be nl . Let the image-irradiance

corresponding to face i be ei  and let the intensity of the

light source be I. Then, assuming Lambertian surfaces,

ei = I × Cosθi       where  Cosθi = ni ⋅ nl

  
   Now imagine altering the gray-level of one of the four
faces slightly leaving the others and their relative
brightness ordering unchanged. The question we are
interested in is whether in this altered situation, we can find

a light direction n' l and illumination intensity I' that

will completely account for the observed brightnesses of
the faces. For convenience and without loss of generality,
we may assume I to be unity. Then,

                       

n1 ⋅ nl = I' n1 ⋅ n' l ≡ e1

n2 ⋅ nl = I' n2 ⋅ n' l ≡ e2

n3 ⋅ nl = I' n3 ⋅ n' l ≡ e3

αn4 ⋅ nl = I' n4 ⋅ n' l ≡ e' 4

                                                                                                          
where α  is the factor by which the brightness of face 4
has been altered. We clearly have four equations in three
unknowns (I' and the two components of the unit vector

n' l ). This, therefore, constitutes an overdetermined

system of equations which may not admit any solution.
Thus, a slight alteration of the brightness of a face may
make the quantitative approach conclude that the observed
shading pattern in the image is inconsistent  and that the
given object cannot be illuminated in the manner shown.
The hypothesis of reflectance variations would be invoked
to account for the image brightness patterns.

   For a more intuitive understanding of this discussion, let
us study its geometric correlates. Consider what happens
when we slightly alter the gray-level of one of the faces of
the sliced-cube in figure  8. The before and after versions of

the sliced-cube are shown in figure 9.  This alteration of
the gray level alters the half angle of the associated cone of
valid light directions and consequently, the 2-D curve
corresponding to the cone in gradient space (see figure 10).
The new curve no longer intersects the other three curves at
the same position; there is now no common point of
intersection of the four curves and the quantitative approach
is forced to conclude that the observed shading pattern in
the image is inconsistent. That is certainly not the way it
looks like to a human subject when he/she examines the
two images in figure 9. Both the objects look consistently
shaded. Minor perturbations in the precise quantitative
values of the surface gray-levels do not seem to be of much
consequence perceptually. In fact, the gray-levels of the
surfaces can be altered significantly without producing the
percept of inconsistency, so long as their relative ordinal
relationships are left intact. The ordinal relationships seem
to be far more important than the precise gray-levels of the
individual surfaces. Dependence on precise gray-level values
is one major limitation of quantitative approaches.

   

Figure 9.   The image on the right is derived from the one
on the left by a slight alteration of the gray-level of one of
the faces.
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Figure 10.  The various faces of a multi-faceted polyhedral
object define curves of valid light directions in gradient
space [17]. The common point of intersection of all these
curves corresponds to the light direction that would account
for the brightnesses of all faces simultaneously. A slight
alteration in the gray-level of one of the faces shifts the
corresponding locus of valid light directions in gradient
space and the four curves (corresponding to the valid source
directions for the four visible faces in this example) no
longer have a common point of intersection suggesting
that the sliced-cube on the right is no longer consistently
shaded. Perceptually, however, the minor gray-level
alteration is inconsequential.



   Quantitative approaches suffer from yet another limita-
tion, which is related to their critical reliance on a precisely
pre-specified surface reflectance function. Minor alterations
in this function profoundly influence the computed solu-
tion. This is a serious drawback considering that in most
situations, the choice of the reflectance function is at best
an educated guess. It seems unreasonable to demand that the
detailed mathematical characteristics of surfaces' reflectance
functions be known before their images can be interpreted.
    What we seek to have is a method that is more generally
applicable (by not assuming a precise reflectance function)
and more robust (by not being thrown off by small
perturbations of the gray-levels in an image). To do so, it
is not sufficient to simply patch-up the existing
quantitative approaches with, say, an idea like using least-
squares error minimization; doing so is like trying to push
the basic causes of the drawbacks under the rug and then
pounding on it to make the bump disappear. We need a
qualitatively different paradigm.

4.2  Determining light directions from
shaded images of polyhedral objects - a
qualitative approach:

   One of the key motivating observations behind our ap-
proach is that our perceptual apparatus is far more sensitive
to detecting relations like 'brighter than'/'darker than'
between pairs of adjacent surfaces than to estimating their
absolute brightnesses. Perceptual interpretations of images
are quite stable over alterations in image gray-levels that
leave the binary relations between adjacent pairs of surfaces
unaltered (in a sense, these relations define perceptual equi-
valence classes for images). In our approach, we use only
such binary relations extracted from the underlying images.
   The other key idea is to use these relations to constrain
the source direction in a manner that least commits us to a
particular reflectance function. Consider figure 11. If S1
and S2 are two surfaces with normals n1 and n2 (remember
that the 3D shape of the object has already been recovered
in phase-1 of the strategy) and S1 appears darker than S2 in
the image, then the valid light directions can be represented
on a Gaussian sphere by one of the two hemispheres
formed by a plane passing through the origin that
perpendicularly bisects the vector joining the tips of the
normals n1 and n2 on the sphere surface. This set of light
directions is valid for any reflectance function that results
in a monotonically decreasing relationship between image
irradiance and angle of incidence. We may further constrain
the light directions to lie above the horizontal plane. A
light direction chosen from this set will maintain the
ordinal relationship between the brightnesses of surfaces S1
and S2. Other pairs of surfaces will similarly define
hemispheres of valid light directions. The complete shading
pattern can be considered consistent if the intersection of all
the hemispheres corresponding to different adjacent surface
pairs yields a finite set. The problem of checking for the
consistency of the observed shading pattern is thus rendered
equivalent to determining whether a set of hemispheres
have a non-null intersection. The non-null intersection set,

if obtained, represents the valid set of light directions.
Since (as shown below) each hemisphere is equivalent to a
linear constraint on the possible positions of the source
vector, this approach lends itself naturally to a linear
programming solution method such as the Fourier-Motzkin
elimination technique [9, 6, 14]. Interestingly, the
Perceptron Learning algorithm [7, 20] is also perfectly
suited to solving this problem. This approach also has the
desired properties of not being critically dependent on
precise measurements of the absolute surface brightness
values and not having to assume a precisely specified
formal reflectance model.
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Figure 11.   Two surfaces of known orientation and their
relative brightness values constrain the light source to lie
in a particular sector of the Gaussian sphere. See text for
details.

   4.2.1.                 A        linear        programming        approach        to        determining
   light       directions       from       shaded       images       of       polyhedral       objects:

Consider the pair of surfaces S1 and S2 with normals n1

and n2  respectively. Compute a vector s  such that

         s  . ( ( n1 + n2) / 2) = 0;        

         s  x ( n1 x n2  ) = 0;

         s  . n1 > 0 and s  . n2  < 0   
                         if S1 is brighter than S2 in the image
         s  . n1 < 0 and s  . n2  > 0   
                         if S2 is brighter than S1 in the image

The hemisphere of valid directions defined by the surface
pair S1 and S2 then is precisely the set of vectors t
satisfying the inequality  s . t  > 0. To constrain the valid
directions to lie above the horizontal plane, we may wish
to enforce the additional inequality  z . t  ≥ 0 (assuming
without loss of generality that the ground plane is the X-Y
plane). For each adjacent pair of surfaces Si and Sj, we get
one such linear inequality , viz. sij . t > 0. We wish to find
a vector t (if it exists) that satisfies all these inequalities.
This is a simple linear programming problem. There are 'e'
linear inequalities for a polyhedral object with 'e' internal
edges. Since we are interested only in the direction of t,
there are only two degrees of freedom to be solved for. As
no objective function is being extremized, there will exist
an infinite number of solutions if there are any solutions at
all. All of these solutions will lie in a convex polygon on
the unit sphere. The sides of this polygon are portions of



great circles corresponding to constraints imposed by some
surface pairs (see figure 12). If a unique solution is desired,
the center of the solution polygon may be chosen to be the
one.

              

Figure 12.  The solutions to the system of constraints set
up by the various surface pairs lie on a convex polygon on
the unit sphere. The sides of this polygon are portions of
great circles corresponding to constraints imposed by some
surface pairs.

   4.2.2                  Determining        the        illuminant        direction               -                 some
   examples:

   In this section, we present some examples illustrating
the use of the aforementioned ideas for checking the
consistency of the observed shading pattern in the image
and for recovering the illuminant direction.

   The first two examples comprise of a cube illuminated
from two different directions. The graphical solutions
(figures 13 and 14) show that the recovered sets of valid
light directions are consistent with human perception.
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Figure 13.  Computing the set of valid light directions for
a cube illuminated in the manner shown in figure (a). The
darkest sector of the Gaussian sphere in (b) represents the
solution set. The ni's are the surface normals corresponding
to the three visible faces of the cube.

     

Figure 14.  Varying the ordinal relationships between the
gray-levels of the faces of the cube changes the computed
solution set for illuminant directions in a manner consis-
tent with human perception.

   The next two examples are more interesting in that they
highlight the difference between a consistently and an
inconsistently shaded image. The reader may recall having
seen these images in the introductory section as figures 1(a)
and 1(b).

   The 3D structures constructed by the shape recovery mo-
dule described in [24] from the geometric configurations of
the two images are truncated hexagonal pyramids. The task
at hand is to verify the consistency of the image gray-level
patterns with respect to these 3D structures. The graphical
solutions, shown in figures 15 and 16, suggest that while
the shading pattern in figure 1(a) is consistent with the
shape recovered by the module responsible for 3-D shape
recovery from 2D line-drawings, that of figure 1(b) is not.
    

(a) (b)

(c) (d)

Figure 15.  Determining the valid light directions for figure
(a) with associated 3-D structure shown in figure (b) using
the Gaussian sphere/surface normal representation. The 3D
structure assumed (and the one that is recovered by the 3D
shape recovery module described in [Sinha & Adelson,
1993a]) is that of a truncated hexagonal pyramid. The
darkest sectors in (c) and (d) represent the computed
solution set. Figure (d) shows the Gaussian sphere in (c)
viewed with the line of sight aligned to the polar axis.
                          



          

(a) (b)

(c) (d)

Figure 16.   The system of constraints set up by the
surface pairs of figure (a) do not admit a solution. No
region of the Gaussian sphere satisfies all the constraints.
Each of the three dark sectors of the Gaussian sphere
satisfies only four of the six constraints simultaneously.

In other words, while a distant light source can be
positioned so as to illuminate the truncated hexagonal
pyramid shape to make it look similar to figure 1(a), there
is no way that it may be made to look like figure 1(b) by
solely manipulating the light direction. This consistency or
inconsistency of the 2-D shading pattern in the image, we
suggest,  determines whether the percept obtained is one of
a solid 3-D shape illuminated in a particular manner or
simply a 2-D pattern of paint.

   4.2.3.             'Largely-solvable'       systems       of       linear       inequalities:

   According to the ideas developed so far, a system of
linear inequalities (that represent constraints on light source
directions) is either 'consistent' or 'inconsistent' and the
shading pattern in the image is interpreted completely in
terms of illumination or reflectance variations respectively.
There is no middle ground. Intuitively, this binary decision
strategy seems overly harsh. In this section, we consider
'largely solvable' sets of linear inequalities. As the name
suggests, these are systems where a majority, but not all,
of the inequalities are simultaneously solvable. When
mapped onto a Gaussian sphere, such a system leads to a
situation akin to that depicted schematically in figure 17. If
we choose a polygon that satisfies the maximum number
of inequalities as the solution set, a natural question to ask
is what the inequalities that are not satisfied in the chosen
polygon represent perceptually/physically.  The answer
turns out to be quite interesting - these inequalities
represent 'compound edges' - image brightness transitions
that are perceived as being caused due simultaneously to
changes in illumination and surface reflectance.

          

Figure 17.   For a 'largely solvable' system of linear
homogeneous inequalities, while no finite region simul-
taneously satisfies all the inequalities, some regions satisfy
most. The numbers within the polygons in the figure
above represent the number of inequalities satisfied within
that region. The shaded region represents the polygon that
satisfies the maximum number of inequalities.

   Figures 18 and 19 show objects that exhibit compound
edges. By setting up the systems of constraints for such
objects and identifying which inequalities are not satisfied
in the polygon of maximal overlap in the Gaussian sphere,
we can pin-point compound edges, as shown in figure 19.
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 Figure 18. (a) Reflectance edges, (b) Illumination edges,
and (c) Illumination and compound edges (indicated by
arrows).
                 



       

Figure 19.  The inequalities not satisfied within the region
of maximal overlap on the Gaussian sphere correspond to
(and may be used to detect) compound edges in an image.

   Why do the unsatisfied inequalities perceptually
correspond to compound edges? The answer is quite
straightforward. The 3-D shape recovery module suggests
that surface orientation changes across all observed edges in
the given image (edges that do not represent such
orientation transitions are immediately labelled reflectance
edges and not considered any further in the shading consis-
tency checking process (see [22] for details)). Moreover, the
'largely solvable' system of linear inequalities suggests that
the observed pattern of shading in the image is quite
consistent with the 3-D shape. Data that does not fit well
into this largely consistent illumination based
interpretation (such data is represented by the unsatisfied
inequalities which correspond, say, to edge set {e}) is then
interpreted in terms of reflectance variations. But, since all
the edges already represent orientation changes (due to their
geometric structure), the reflectance and illumination
interpretations are superimposed for the edges belonging to
set {e} and they are perceived as being due to a simul-
taneous change in surface orientation and reflectance.

4.3  Justifying the shading consistency
checking approach:

   The strategy for global processing that we have
employed above comprises of two parts: (1) deriving the
likely 3-D structures using the geometric cues in the 2-D
image, and (2) checking whether the 2-D pattern of shading
in the original image is consistent with the derived 3-D
structure(s). The shape derivation process, in other words,
does not make use of the gray level information in the
image. At first thought, this may seem to be an odd way to
proceed. Would not the shape recovery process be facilitated
if we were to provide it with gray-level information ? Not
necessarily. Since the image gray-level patterns can be
arbitrary (could be due to reflectance or illumination
variations), they often may not correspond to any 3-D
shape. A shape recovery process that relied critically on
shading cues would be misled by such patterns. To avoid

this possibility, it makes sense to not confound geometric
and shading cues in the shape recovery process. The
geometric cues, being perceptually more powerful than the
shading information for signaling structure [27] may be
used in isolation and the consistency of the two sources of
information may be verified subsequently.

   Besides the need to avoid the possibility of being misled
by arbitrary gray-level patterns, a more compelling
argument for not relying overmuch on the shading cues is
provided by the results of a new psychophysical experiment
we designed expressly to determine the relative significance
of geometric and shading cues for the task of 3-D shape
recovery. The stimuli we used in the experiments were
different states of a structure we call the 'Random Height
Tesselation'.

   4.3.1               Random        Height        Tesselations:   

   To be able to determine the relative significance of gray-
level and gemetric cues for the task of 3-D shape recovery,
we need a stimulus that would allow us to vary one of the
cues while keeping the other constant. Furthermore, we
would not want our results to be 'contaminated' by higher-
level cognitive processes i.e., the stimuli should be such as
to avoid the possibility of the use of high-level object
specific knowledge in their interpretation. Both these
requirements are met elegantly by the use of random height
tesselations.

  

Viewer

Fixed distant
light source

Figure 20. The physical setup underlying a 'random height
tesselation' display. The beads are free to move along the
wires that are aligned with the line of sight. The changing
surface orientations of the triangular facets leads to changes
in image irradiance while leaving the geometric structure of
the display unaffected.

       The physical setup of a random height tesselation is
shown in figure 20. It is inspired by the beads on wires
idea described previously, only now the x-y positions of



the wires are chosen randomly. The bead connectivities are
such that sets of three neighboring beads are grouped
together to define planes. The z-values of the beads are
arbitrary and can be varied at will without changing the
geometric structure of the image as observed by an observer
positioned vertically on top of the whole setup (the 'wires'
are aligned with the line of sight). As the beads move
(independently and in an arbitrary fashion) along the wires,
the orientations of the triangular planar facets defined by
groups of three beads change. Assuming a fixed light
direction and a particular reflectance function for the planar
facets (say, Lambertian, as used in our experiments), the
changing surface orientation leads to a change in the
observed image irradiance in the corresponding image
patch. Over the whole image, the triangular facets change
brightnesses as the beads move along the wires; the geo-
metric structure of the figure, however, remains completely
unaffected. Thus, here we have a technique that allows us
to vary the shading information in an image while
maintaining the geometric cues constant. The interesting
question to ask, obviously, is whether an observer can
recover the 3-D configuration of the beads at different times
by the varying shading information in the image.

    Figure 21 shows two typical stimuli generated using
random height tesselations. Observe that the geometric
structure of both the stimuli is identical; the gray-levels
associated with the different faces are, however, very
different due to the different surface orientations. The
results of the psychophysical experiment were quite
interesting. Recovery of 3-D structure from such static
stimuli and even their continuous animations was found to
be an extremely difficult perceptual task by all the subjects.
The animations were perceived as showing a flat pattern
with the surface grays of different regions changing over
time; the changes in shades were not  correlated with
changes in 3-D structure of the whole setup.

 

Figure 21. Two typical random height tesselation displays.
Notice that the geometric cues in both the displays are
identical (the figures reproduced here are not actual
experimental stimuli. They are intended simply to provide
a qualitative 'feel' for the appearance of the actual patterns).

       We are now left with the task of exploring the
situation where geometric cues are varied while keeping the
shading cues constant. This, as the reader will surely
realize, is identical to the conventional 'structure-from-
motion' experiments. It has been repeatedly established that
3-D structure can be easily and reliably extracted from the

information provided by the transformations in the geo-
metric structure of the image over time.

   The above results suggest then that the human visual
processes involved in 3-D shape recovery are more
critically dependent on the geometric structure of images
than on their shading cues. To be fair, we can say this with
confidence only for polyhedral objects. For smoothly
curved objects, where geometric cues like lines and edges
are not too readily available (especially inside the object
boundaries), shading information might turn out to be
important for structure recovery. While we do not wish to
suggest that shading information is completely irrelevant
for shape recovery of polyhedral objects, we would like to
propose that it is not made use of in a very big way by the
human visual system; more importance is attached to the
geometric cues.

   The results described above provide some justification for
our approach of first deriving 3-D shape using geometric
cues and then verifying the consistency of the gray-level
pattern in the image. From another point of view too, this
approach seems valid: in deriving the 3-D structures from
only the line drawing, the set of structures S we come up
will include all interpretations perceptually consistent with
the line drawing. If we had used shading information during
shape recovery along with line drawings, we might have
come up with a structure set S'. Since S was derived under
less restrictive conditions than S', the latter necessarily has
to be a subset of the former. Thus, we shall not miss the
true solution by not making use of the shading information
though we might have to do some extra work. If the
cardinalities of S and S' are not too different (as is usually
the case), the problem of extra-work is really a non-issue.

5. CONCLUSION:

   The problem of interpreting images in terms of their
shading and reflectance components has traditionally been
addressed as a low-level vision task in a highly simplified
2D Mondrian domain [15, 16, 11, 18, 3, 4].Only very
recently has it been appreciated that in a 3D world, such
conventional approaches are of very limited use; new, more
sophisticated solution strategies are required [10, 1, 13].
One such strategy has been proposed by Sinha [22, 25],
who has addressed the problem as a mid-level vision task
rather than as a purely low-level one. Sinha suggested that
a key computation that needs to be performed for
interpreting images acquired in a 3D domain is the
verification of the consistency of image shading patterns
and the likely 3D structure of the scene. This is the
problem we addressed in the present paper.
   Considerations of robustness, generality and the
characteristics of the human perceptual system prompted us
to discard available quantitative solution techniques in favor
of a qualitative one. The two most important attributes of
our technique are its use of qualitative comparisons of gray-
levels instead of their precise absolute measurements and
also its doing away with the need of an exact pre-



specification of the surface reflectance function. We showed
that this idea lends itself naturally to a linear-programming
solution technique. Results obtained with some sample
images were seen to be in conformity with human
perception.

   The idea of verifying the consistency of shading is
ideally suited for use in situations wherein the 3D structure
of the scene can be well estimated either by employing
heuristics (as was done in [22, 24]) or by the use of other
information such as stereo. The notion of verifying the
consistency of shading patterns instead of using them to
recover 3D structure is rather unconventional. It is,
however, a reasonable approach to take when the scene is
likely to have a spatially non-uniform reflectance
distribution. Some psychophysical results too support this
approach.  

   A limitation of the current implementation of this
approach is that it is designed to work solely with images
of polyhedral objects. There is, however, no fundamental
reason why it cannot be extended to handle smoothly
curved objects which can be thought of as finely tesselated
polyhedra. In fact, the ‘needle-diagram’ representation of
surface orientation for curved objects uses just such an
intuition.
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