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We applied a set of 1- and 2-bar tests to directionally selective (DS) complex cells in the cat's striate
cortex, and compared the responses with those predicted by two computational models. Single-bar
responses and 2-bar interactions produce distinctive patterns that are highly diagnostic. The observed
responses are quite similar to those predicted by a basic (non-opponent) motion-energy model [Adelson    
& Bergen (1985) Journal of the Optical Society of America A, 2, 284-299]. However, they are not
consistent with an opponent combination of energy models, nor are they consistent with any stage of     
the classic Reichardt model. In particular, the Reichardt model (as well as opponent combinations of
energy models) predicts a separable space-time symmetry in the 2-bar interaction that is not observed     
in our measurements, while the non-opponent energy model predicts an inseparable, oriented       
interaction very similar to the measured cortical responses. Comparisons between model and  
measurements suggest possible mechanisms of spatial receptive-field organization and of nonlinear
transformations.
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INTRODUCTION

Interest in processing of signals related to image motion   
by single visual neurons has been intense since the late
1950s. In the cat's visual cortex, Hubel and Wiesel (1959)
showed that many neurons responded more strongly to     
one direction of bar motion than to the opposite direc-   
tion. i.e. they were directionally selective (DS). At about  
the same time, Reichardt and colleagues (e.g. Reichardt,
1957, 1961) began studying optomotor responses in the  
fly, and proposed a motion-opponent DS model that has
been successful in many domains. More recently van   
Santen and Sperling (1985) have described an "elabo-   
rated" version of the Reichardt model that incorporates   
front-end bandpass filters in space and time to better fit
known properties of the vertebrate visual system than the
lowpass and delay filters  riginally  used to model the fly.

It has been shown (Poggio & Reichardt, 1976)          
that many different motion computations are formally
related; and in the literature these various models             
are  sometimes  grouped  together  to  emphasize  their  sim-
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ilarities. But in our  present work we are interested in
making possible distinctions between models. Therefore,      
to avoid confusion, we will follow the common conven-
tion of using the term "Reichardt model" to refer only       
to the classic Reichardt computation, in which bandpass
filters are optional, but a four-quadrant multiplier is
obligatory.

A number of investigators have proposed that the    
initial stage of DS could be achieved with linear spatio-
temporal filters (Fahle & Poggio, 1981; Watson &
Ahumada, 1983, 1985; Adelson & Bergen, 1985; Burr,  
Ross & Morrone, 1986). Furthermore, there is recent
evidence for correspon-ding single cells in the visual     
cortex (Reid, Soodak & Shapley, 1987; McLean &     
Palmer, 1988, 1989; Hamilton, Albrecht & Geisler,    
1989), but see Discussion about their less obvious role in
motion processing. Although such linear filters cannot
generate a higher mean response for motion in the    
preferred direction, their gradual progression of tem-      
poral phase with position may produce stronger modu-   
lation for that direction. Adelson and Bergen (1985) have
proposed a model in which such a linear stage is followed  
by a nonlinear interaction that produces an unmodu-        
lated (phase-independent) signal corresponding to "motion
energy". The model is consistent with a variety of
psychophysical motion phenomena, and can plausibly be
implemented  with  neural  hardware.
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Our interest here is to study the properties of DS
complex cells (Hubel & Wiesel, 1962), and to relate their
behavior to that of candidate models. It has been noted    
that the motion-energy model is closely related to the
Reichardt model, and that in certain cases it is possible     
to construct opponent combinations of basic energy     
models that are formally equivalent to Reichardt models
(Adelson & Bergen, 1985; van Santen & Sperling, 1985;
cf. Poggio & Reichardt, 1976). However, we show here    
that the basic energy stage of the Adelson and Bergen     
model is not equivalent to any stage of the Reichardt    
model. This difference creates an opportunity to distin-   
guish  between  the  models.

Previously, we have applied two spatiotemporal tests      
to DS complex cells in the cat's striate cortex (Emerson,
Citron, Vaughn & Klein, 1987b). We have now predicted
responses of Reichardt and energy models to the same      
two tests. Each model contains many stages, and each      
stage of each model predicts distinct behavior. Although   
the final stage of an opponent combination of two basic
energy models can be identical to the final stage of
fundamentally opponent models such as the Reichardt  
model, at every other stage the two models differ in
unambiguous ways. As it turns out, among these single-
subunit models, the observed neural behavior agrees well
with only one stage of one model, namely, the basic      
(non-opponent) energy stage of the motion-energy        
model. We therefore offer the basic motion-energy         
model as a plausible candidate for DS complex cells in      
cat. Some of these results have previously been presented
briefly (Emerson, Bergen & Adelson, 1987a; Emerson &
Bergen,  1989a,b).

METHODS

Surgical preparation

Details about the surgical preparation of adult cats       
have been reported elsewhere (Emerson & Gerstein,    
1977a; Citron, Emerson & Ide, 1981; Emerson &
Coleman, 1981; Emerson et al., 1987b). Briefly, animals
were surgically anesthetized with barbiturate, and pre-    
pared for extracellular recording of single neurons in        
area 17 with high impedance glass micropipettes.           
After installing a fluid-tight chamber onto the skull, the
exposed dura was reflected, and cortical oscillations were
restricted by filling the sealed chamber with high vis-     
cosity silicone fluid. During the experiment, the animal    
was paralyzed, and anesthetized lightly with a continu-       
ous 1-2 mg/kg/h of thiopental sodium I.V. Heart rate     
was monitored continuously to ensure that anesthetic    
dosage was sufficient to keep the animal in a relaxed and
unresponsive state. Contact lenses focused the eyes onto       
a  tangent  screen  or  video  monitor  115 cm  distant.

Visual stimuli

After locating and classifying receptive fields (RFs)     
with conventional moving edges and bars, and with     
flashing bars (Citron et al., 1981; Emerson & Coleman,
1981; Emerson, 1988),  we inserted a mirror into the path to

the tangent screen and centered an 8° by 11° video moni-      
tor on the RF. We then measured the impulsive        
responses to single and paired, optimally oriented bars      
by presenting a counter-balanced sequence of dark and      
light bars, simultaneously at 16 contiguous 0.5 by 11° bar
positions across the RF. This 16-bar random   "white-noise"
stimulus has been described in detail previously (Citron      
& Emerson. 1983). Each bar could change its luminance
randomly and independently of the other bars every video
frame (every 16msec) over three luminances, 444          
cd/m2 (light bar), 222 cd/m2 (mean luminance), and 0 cd/m2

(dark bar). As all possible combinations of dark and        
light bars could occur in a given frame, the stimulus
included bars of both contrast signs, each moving up        
and down in short   sequences, and at a wide range of speeds.
All cell measurements shown here except in Fig. 1A       
were isolated from components of the response to this rich
spatiotemporal  stimulus.

Physiological data

The times of neural impulses were measured with a      
resolution of 1 msec, and used for estimating the      
responses to two tests, a single-bar presentation          
(Fig. 1C-E) and the nonlinear interaction between re-
sponses in a two-bar presentation (Fig. 2). The Wiener-    
like kernels used for these estimates have been described       
in detail elsewhere (see Appendix of Emerson et al.,  
1987b). They represent a "time-locked response", similar    
to a PST histogram, and are calculated, as in  a PST
histogram, by crosscorrelating the neural response with    
the single or paired stimuli of interest. Here, the nonlin-     
ear interaction plots were limited to (Wiener) second      
order, which is the lowest-order nonlinear interaction. In    
the context of a Wiener kernel, the order implies the number
of stimulus events that contribute to the crosscorrela-       
tion, and for intensive nonlinearities the calculation         
can generate a squared term by including the product of      
two bars that coincide in space  and time.

Although second-order may seem too low to charac-   
terize 1- and 2-bar responses in a real complex cell,       
which could be of order higher than two, (1) Wiener    
kernels are orthogonal, and therefore up to their order          
do the best job possible in capturing nonlinear behavior
(Marmarelis & Marmarelis, 1978). That is, low-order    
Wiener kernels partially incorporate any existing
nonlinearities of higher-degree. (2) In an earlier paper        
we compared a second-order measurement with one          
that included third- and fourth-order Wiener kernels        
(Fig. 1K vs J of Emerson et al., 1987b). We found
essentially no fourth-order (Fig. 5E of that paper), and       
the estimates look qualitatively the same, which suggests
that any third-order nonlinearities may affect the ampli-     
tude but not the shape of the interaction. And (3), a          
2-bar stimulus is all that is needed to test completely the
second-order model under consideration. The nonlinear
residual from a 2-bar linear superposition test is identi-    
cal to the model's Wiener second-order kernel (p. 153          
of Marmarelis & Marmarelis, 1978),  and  provides  an equi-
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valent test with which to compare the second-order      
kernel  of  the  measured  cell.

Model data

Model data were derived from digital simulations of         
1- and 2-bar tests of the models discussed by Adelson       
and Bergen (shown in Fig. 18 of their 1985 paper).
Responses were simulated by convolving temporally and
spatially the stimuli of interest with the model filter
functions and then subjecting the resulting signal to          
the appropriate linear and nonlinear transformations.  
Impulse responses of the two linear temporal filters used      
in the early stages are shown here in Fig. 3B. They were
drawn from equation (1) of Adelson and Bergen (1985),     
with the addition of β to adjust the weighting of the
undershoot  relative  to  the  earlier  positive  phase

f(t) = (kt)n exp(-kt)[1/n! - β(kt)2/(n + 2)!]         (1)

where n takes values of either 6 or 9, k was 1.5, and β       
was 0.4. Responses were sampled in 16 periodic incre-
ments in time, t, beginning with the time of stimulus
presentation, and also 16 samples in one-dimensional    
(1D) space. The number of samples plotted was chosen       
to  match  the  physiological  measurement.

In our first calculation of 1- and 2-bar model re-       
sponses (Emerson et al., 1987a) we used the odd- and    
even-symmetric spatial Gabor functions of Watson and
Ahumada (their Fig. 7B and Fig. 6B in 1983 & 1985,
respectively), and of Adelson and Bergen (Fig. 10A in  
1985). Here, we have been able to obtain a nearly      
identical model-result by using front-end filters that  
preserve the center-surround, even-symmetric RF struc-     
ture that we and others have measured in the retina and    
LGN of the cat (e.g. Rodieck, 1965; Citron et al., 1981;
Citron, Emerson & Levick, 1988). We have restricted the
form of these early spatial filters to an even-symmetric
Gabor function of σ = 2.5 (see Fig. 3B,C), because   
spatially odd-symmetric RFs do not occur until the       
visual cortex. We obtained the approximate 90• spatial
phase-shift needed between these two filters by offsetting the
relative spatial position by 1. Therefore, the serial          
order and nature of transformations in a well-fitting       
model will be directly applicable to geniculocortical
connectivity  and coding  in the mammalian visual  system.

RESULTS

Cortical measurements

Results shown here are representative of the five DS       
cells out of seven striate cells from the complex family      
on which we have performed detailed spatiotemporal     
white-noise analysis. We have chosen as our most de-     
tailed example the same DS "C" cell (Henry, 1977) that    
we have analyzed previously for its subunit properties
(Emerson et al., 1987b). Two other examples of "B" cells
from the complex family (Henry, Lund & Harvey, 1978)     
are shown in Discussion, and a nondirectional B cell is
shown in Fig. 6 of Emerson et al.  (1987b). DS simple cells

(Hubel & Wiesel, 1962) show a similar dependence on
nonlinear interactions (Emerson & Citron, 1988, 1989,
1992),  but they will be considered in detail elsewhere.

To compare physiological measurements with models,     
we have selected 1- and 2-bar tests that probe the system
carefully by eliciting different signatures in different RF
types (Citron et al., 1981; Emerson, l988), and also for    
DS vs non-DS cells (Emerson et al., 1987b). Bars were
longer than the RF, which makes the experiment one-
dimensional in space, as are the models. The first step is     
to show that a neuron will demonstrate DS responses to       
a stepwise moving stimulus that can be exactly mimicked
by our discrete 16-bar CRT display. Figure 1A shows      
that stepwise movement of a conventional light bar      
across all 16 positions of the CRT (nine of which are  
shown in Fig. 1B) can elicit strongly DS responses, even
when the bar remains at each position for 64 msec. This        
is a general result for DS members of either simple or
complex cortical cell families (Emerson & Gerstein,     
1977b;  Emerson  &  Coleman,  1981).

Cortical 1-bar tests

To study DS we began by reducing the stepwise
movement sequence to its separate single-bar spatial
elements, shown in Fig. 1C. Estimates of responses to a  
16-msec presentation at each single bar position in this    
test are shown in Fig. 1D in PST-histogram format.      
Here, dark bars were chosen because they elicited       
stronger responses. DS complex cells show the same
preferred direction for light and dark bars. These Wiener
second-order-kernel estimates of the 1-bar response       
include the nonlinear intensive or "diagonal" term of the
Wiener second-order kernel, which in such a nonlinear
neuron provides a considerably more accurate estimate         
of the dark-bar response than if only the first-order,          
or "linear" term was used (for details see Methods;
Marmarelis & Marmarelis, 1978; Emerson et al., 1987b;
Mancini,  Madden  &  Emerson,  1990).

The homogeneity in time and symmetry in space of       
the brief increases in firing rate around positions 7-12      
for this neuron indicate that DS in this unit cannot          
be explained by considering responses to single bars. That
is, there is nothing in the single-flash responses to indicate
DS, and a linear superposition of 1-bar responses in the   
two possible spatiotemporal sequences at a given speed
would generate a similar prediction for either upward          
or downward motion (e.g. Fig. 1E of Emerson & Citron,
1989; or Fig. 1F of Emerson & Citron, 1992). A correlate
of this property is that these 1-bar responses, when plotted
in the contour format of Fig. 1E, show response domains
that lack oblique orientation in space-time (Adelson          
& Bergen, 1985). In the remaining figures, we use contour
plots for two-dimensional (2D) functions because they
illustrate well the shapes of these 2D relationships.

Cortical 2-bar tests

As 1-bar tests do not explain DS in these cells, the     
cells'  response  must  depend  on  nonlinear  interactions be-
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FIGURE 1. Sampled motion in a directionally selective (DS) striate complex ("C") cell (cell 1-3). (A) Averaged responses to 180 upward
(left bins) and downward (right bins) stepwise sequences of a conventional light bar moving across the RF, as shown in B, at a mean speed
of 7.8°/sec (note upward preference). Vertical axis represents position; time-course of the response is reversed for downward movement
(note arrows) to align bar positions spatially for opposite directions. Each position was maintained on the video screen for 64 msec; bin
resolution, 16 msec. (B) Successive contiguous positions of the 0.5° x 11° bar moving stepwise across the RF (large rectangle). (Schematic
bars of B & C are shorter and narrower than the bars used for experimental measurement, which assumed contiguous positions, and were
longer than the RF.) (C) Individual positions 5-13 of the sequence in B. Such isolated stimuli comprise, spatially, the first-order elements of a
moving stimulus. (D) Second-order Wiener estimate of (time-locked) responses to single 16-msec stationary dark-bar flashes at each
position represented in C, including an intensive component. Time-course plotted with l6-msec resolution, referred to the presentation time.
(E) Same data as in D, but plotted as contours to emphasize the lack of oblique orientation in space vs time. Contour lines map out the locus
of points with the same response value. Contour slices are chosen at equally spaced values, except that the contour at zero is never drawn in
these plots because it is dominated by noise. Amplitude calibrations in all figures are expressed as firing rate (spikes/sec) at the bar-
luminance used, and were calculated using the maximum 16-msec bin. Range of data here and in D -0.351 to +2.64/sec. The positive range
in E was divided into six contour intervals, each 0.440/sec. These values apply specifically at this luminance and, except for A (which was
the only conventional measurement reported in this paper), to the highly gain-adapted conditions of the white-noise experiment in which the
responses  were measured  (for details see Methods of Emerson  et al., 1987b).  All  white-noise measures for  this cell  represent 35 min  of

random-stimulus  presentation. Mean luminance was 222 cd/m2, with 100% modulation. Retinal eccentricity was 11.7°.

tween at least two positions in space and time. There-    
fore, our second test used two bars to capture the        
elements of motion to which 1-bar tests are blind:     
direction (spatiotemporal order) and speed (spatial and
temporal interval). Because we already know the    
responses to each single bar from the above test, the new
information desired is the nonlinear interaction between      
the individual responses that make up this elemental     
sample of motion. Figure 2 shows an example of a linear
superposition test for a bar presented at position 10
followed by a bar at position 9, a sequence in the  
downward, nonpreferred direction for this cell. The     
stimuli are represented in space and time as small circles      
in the boxes of Fig. 2A,B, where the vertical axis shows
spatial location of the presentation and the horizontal     
axis shows the time of the presentation, always referred       
to the bar at the center of B, called the "reference bar".  
Below each box is shown the response of this same DS
complex cell to the two impulsive bar presentations
(stimulus time-course indicated below the response).    
Figure 2C represents the 2-bar stimulus as a pair of     
circles, the open circle representing the "neighbor bar",
which can take any value over the full range of positions,
and times within the space-time coordinate box. The       
fixed reference event is represented by the solid circle.    
Below the spatiotemporal bar-pair is shown, not the
measured 2-bar response, but the Wiener second-order
estimate of the difference between the linear superposi-     
tion of separate bar responses and the raw response        
itself,  i.e. the non-linear residual,  or interaction.  The nega-

tive interaction shown in Fig. 2C strongly sup-          
presses the expected 1-bar response to the second bar        
(Fig. 2B), which helps explain the weak responses for
downward bar motion in Fig. 1A. (The amplitude in       
Fig. 2C is doubled with respect to that in A & B to
illustrate  the  similar  time-course  of  the  interaction.)

To appreciate the velocity dependence of the spatio-
temporal interaction around reference bar 9, we need to
explore the result of sampling with the neighbor bar    
(open circle) the entire 2D spatiotemporal region within      
the box of Fig. 2C. The significant information about the
inter-action below the box is confined to the first 80 msec
after the second pulse, the event that provides the first
opportunity for nonlinear interaction. This property    
requires defining a new temporal variable, τ , whose     
origin is at the occurrence of the second event. Previous
work has shown that the recourse of a DS interaction is
monophasic and independent of the temporal bar separ-   
ation (∆τ) or of the spatial bar separation (∆S) (see          
Fig. 2 of Emerson & Vaughn, 1987 for a ∆τ  VS τ  plot,   
and Discussion below). Therefore, to allow plotting the
interactions over 2D coordinates that include space,
henceforth, we will suppress the τ  variable by summing    
the interaction over the first 80 msec to derive a single
number (scalar) for each 2-bar combination (except in       
Fig. 5B, which had a 48 msec summing period; see    
legend).

Figure 2D shows a contour plot of the summed
interaction in a format that will be used below for  
comparing   measured  with  modeled  results  over  the  full
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FIGURE 2. Calculating a 2-bar nonlinear interaction for the same DS neuron. (A) Location of the variable, or "neighbor" bar in space-time
is designated with an open circle (here, a dark bar at position 10). The neuron's response, taken from Fig. 1D, is shown below in the correct
temporal position, along with the time-course of the stimulus, 32 msec before the bar in B. (B) Location of the fixed. or "reference" dark bar
at position 9, but always shown as a solid circle at the center of the spatiotemporal coordinates, with the time-course of its response and the
stimulus shown below. (C) Spatiotemporal representation of this particular dark-bar pair. The time-course of the nonlinear residual from a
superposition test of the two bars is shown below as a function of time, τ, after the presentation of the later stimulus. The interaction is
calculated as the Wiener second-order spatiotemporal kernel. which is the second-order estimate of the response to the bar-pair minus the
linear sum of responses in A and B. It is plotted at twice the amplitude of A and B to emphasize the similarity in time-course. Therefore, the
negative interaction in the downward, null direction for this two-position sequence, alone, suppresses to about one-half the expected
response to the later occurring bar at position 9 to B. (D) Spatiotemporal dependence of nonlinear interactions around reference position 9,
plotted over the full two-dimensional (2D) range of 16 possible 0.5° neighbor positions, and 15 temporal separations (∆τ) covering     +     112
msec. Dashed contour lines denote negative regions of the interaction. Kernel values, such as in C, have been summed over the first 80
msec (5 bins) following the later stimulus to create a scalar value that can be plotted in D. Interaction values have been normalized from the
5-bin sum to the peak time-bin of the interaction by multiplying by 0.391, a shape factor determined experimentally for this cell. Range of
normalized data: -0.910 to + 1.12/sec, with six positive contours. The location of the particular suppressive interaction illustrated above in
A-C is denoted by an open circle at the bottom of the valley in D, at the same 2D location as the neighbor bar in A,C. Responses of this cell
were DS in Fig. 1A because upward movement elicited strong nonlinear facilitation along the positive edge, whereas the many pairs of bars
constituting a downward movement sequence suppressed responses that were expected from the l-bar tests (see text). The incomplete
suppression shown here by the low amplitude in C is caused both by our limiting the contribution to only a single pair of positions, and by this
second-order measurement's inability to  exclude  light-bar effects, which were weaker.  Inclusion of third-order-effects predicted stronger

suppression (see Fig. 1K vs J of Emerson et al., 1987b).

spatiotemporal region. Solid contours denote the region     
of constant positive interaction above the expected        
linear response (mainly facilitation in the shape of an
elongated, elevated ridge). Dashed contours denote     
negative regions of the nonlinear interaction (suppres-      
sion in the form of two elongated valleys). The strongest
suppression is marked by the open circle at the bottom       
of the upper valley in D, and corresponds to the bar-pair
illustrated  in  C.

As suggested previously (Emerson et al., 1987b), a
compelling interaction for the obliquely oriented           
ridge-valley structure of the interaction in Fig. 2D is that      
it  provides  a basis  for  velocity  selectivity  in  single neu-

rons. Because the coordinates of this plot are space vs     
time, each possible constant-velocity bar-traverse in-   
cludes nonlinear interactions occupying loci only along      
a straight line that intersects the reference position at the
center of the plot. At this position during sampling a
traverse, the neighbor and reference bars coincide          
(∆S = ∆τ  = 0), which tests intensive nonlinearities      
through a doubly intense bar. The slope of the line      
equals the bar velocity in °/sec. If the neighbor bar, or        
any moving bar, is stepping in the upward direction at       
the appropriate speed to create a trajectory with an       
average slope matching that of the positive interaction      
ridge (here, about +16°/sec),  it will benefit  maximally from
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nonlinear facilitation. At that velocity strong facili-       
tation is elicited between each position in the sequence      
and its brief presence when it occupied the reference  
position.  Trajectories  associated  with  other  velocities can

evoke strong suppression in the valleys, especially for
negative slopes, which occur for the null direction. See
Discussion for consequences of this shape for filtering
properties in the frequency domain.

FIGURE 3. (A) Version of the Reichardt model that incorporates a layer of bandpass spatial filtering [the fn(s)'s], followed by a layer of
bandpass temporal filtering [the gn(t)'s] to achieve an elaborated model that is appropriate for mammalian vision. (B) Separable
spatiotemporal impulse response resulting from the cascaded spatial and temporal filters indicated by the solid curves in B (see text for
details). Coordinates and contours as in Fig. 1E, but with dashed regions negative. Model contour intervals have been chosen arbitrarily to
best illustrate the 2D shape of the responses, but are always equal. (C) Separable spatiotemporal impulse response resulting from the
cascaded spatial and temporal filters indicated by the dashed curves in B. This filter is approximately in quadrature in space and time with
respect to that shown in B. (D) Multiplying the outputs of the separable filters of B,C produces a nonlinear response, seen in the 2-bar
interaction (right). Note that the l-bar response (left) also remains separable. All modeled 2-bar interactions are in the format of Fig. 2D, but
to improve the s/n and remove the slight asymmetries in interactions around individual reference positions, they have been averaged over
the 16 reference positions that contributed to the nonlinear interaction. (E) Subtracting the two "half detectors" cancels l-bar responses, and
shows the same 2-bar motion opponency as in D. (F) Physiological measurements differ from every level of the Reichardt model, both for
1- and for 2-bar responses. Wiener-kernels for the measurement of F, right have been averaged over reference-positions 7-11, and then
normalized to the scale of the maximal interaction bin for reference position 9 of Fig. 2C by multiplying unaveraged values of Fig. 2D by an
experimentally determined 1.38, in addition to the factor of 0.391 used to correct for temporal summation. Range of data in  F, left;  same as
in Fig. 1E;  normalized  range in F:  right: -0.864 to +1.07/sec.  D,E, right and  F, left  plotted with  five contours;  B, C, and F,  right  used six;

and D, left needed eight to see the secondary regions.
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The shape  of this interaction is the same for reference
positions chosen across the RF (Fig. 3 of Emerson et al.,
1987b). Therefore, in complex cells, velocity selectivity
seems to depend on a family of similar, overlapping      
subunits, whose characteristics can be seen best by
averaging the interactions around all active positions across
space, each centered around the reference bar                   
(Fig. 4 of Emerson et al., 1987b; right sides of Figs 3F     
and 4H here for the same unit as in Fig. 2D). We have    
used this spatially averaged interaction, called the       
"motion kernel" to compress the available 4D infor-   
mation from 2-bar tests of motion into a single 2D plot.
Below, we use this construct to compare measured with
modeled interactions. Although we have averaged across     
all space for the modeled 2-bar interactions, the range is     
not critical because unaveraged measured or modeled            
2-bar interactions show similar structure with a maxi-    
mum near the reference bar, even for simple cells                
(e.g. Fig. 3 of Emerson & Citron, 1989, 1992).

1- and 2-bar tests of the Reichardt model as compared      
with  the  cortex

As the 2-bar interaction of Fig. 2D and its spatial  average
show a characteristic shape that may be diagnostic for the
underlying mechanisms, we applied both 1-bar and 2-bar
tests to two models that depend on different mechanisms, a
motion-opponent model, as exemplified by the Reichardt
model (1957), and the unidirectional motion-energy model of
Adelson and Bergen (1985). We begin in Fig. 3A with the
geometry of a motion-opponent model whose front end
matches the elaborated Reichardt detector proposed by van
Santen and Sperling (1984, 1985). A difference from earlier
descriptions is that we have regrouped the elements
pictorially in A to emphasize the functional subunits and
serial stages of the model. Two columns of boxes in the
righthand portion of the figure show responses in space vs
time for elements of the pictorial model, the left column for
1-bar inputs. and the right column for 2-bar interactions.

Within each darker rectangle in A is a half-phase subunit
that depends on the product of two space-time-separable 2D
linear filters, shown in B & C, each of which is generated by
the outer product of one of the spatial and one of the
temporal functions shown to the left of B and between B &
C, respectively. The resulting center-surround even-symme-
tric filters are shifted in space with respect to each other (see
Methods) and have different temporal phase to achieve
approximate spatio-temporal quadrature (discussed also by
van Santen & Sperling. 1985). Each of the half-detectors,
which produce the signals AB' and A'B, are motion oppo-
nent, but with phase-dependent oscillations. When the differ-
ence is taken at the last stage, the final signal is also mo-
tion-opponent. but the phase-dependency has been removed.

As the first stages are linear, they exhibit no non-      
linear interactions; thus the panels at the right of              
B & C are blank. The nonlinear interaction first appears      
in panel D-right, after the multiplicative stage in the     
half-detector. Note that although the l-bar responses            
in  B-D  (left)   are  displayed  in  the  same   dimensions  as

Fig. 3F-left, they differ considerably from the unimodal
complex-cell impulse-response by showing phase sensi-
tivity, i.e. alternating positive and negative regions in     
space and time. The 2-bar interaction shows a DS     
preference for upward motion, but also indicates full  
motion opponency. That is, the space-time separable
interaction shown in D-right (and also for the motion-
opponent stage of E-right) shows as strong, but negative,
response interactions for downward as for upward   
movement. This fundamental motion opponency has     
been pointed out by van Santen and Sperling (1985).    
When the front-end spatiotemporal filters are bandpass,      
as here, motion opponency occurs at the half-detector      
level, as well as at the final output stage. By the time we
reach this fully opponent stage in E, the model shows no
responses at all to single bars, and shows antisymmetric
motion-opponency for bar pairs (see below). This    
restriction of the response to moving stimuli is a well-
known property of Reichardt models (e.g. Poggio &
Reichardt, 1976), and in a mathematical sense, special-     
izes  them  for  carrying  purely  directional  information.

The Reichardt model makes several clear predictions  
about the 2-bar interaction: (1) the interaction should be
zero along the ∆S = 0 and ∆τ  = 0 axes; (2) the interaction
should be separable in space and time; and (3} the interaction
should be antisymmetrical about the spatial and temporal
axes, i.e. the interaction retains the same amplitude but
opposite sign when the sign of ∆S or ∆τ  is inverted, which
generates a "checkerboard" pattern. None of these predictions
is upheld in the data. In addition, no stage correctly predicts
the unimodal character of the 1-bar response. The
incompatibility derives from a fundamental difference in
symmetry of the interactions, and would not disappear with
changes in spatial or temporal filter parameters.

Comparison of measured cortical responses with the energy
model

As neither the 1-bar nor 2-bar cortical tests matched any
stage of the Reichardt model, we next tested the motion
energy model, as proposed by Adelson and Bergen in 1985.
Figure 4A shows a drawing of the energy model presented in
Fig. 18B of the 1985 paper, except that it has been
reorganized pictorially to facilitate comparison of the
functional subunits and serial stages of information-
processing with those of the Reichardt model in Fig. 3A.
(The positions of the mirror-symmetric unidirectional
models also have been exchanged to agree with the upward
preferred direction of the Reichardt model in Fig. 3.) In Fig.
4B,C the same linear separable filters as in the Reichardt
model of Fig. 3B,C shows no 2-bar interaction, nor does
their linear sum, shown in D-right. However, the responses
of D and I differ from that in Fig. 3D by being generated
through summation rather than multiplication of these front-
end separable filters (Watson & Ahumada, 1983). The
resulting filters in D-left and I are obliquely oriented, i.e.
space-time inseparable, and differ relative to each other     
by being shifted  in phase by about 90° (i.e. in quadrature) in
both space and time.
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FIGURE 4. (A) Structure of the basic motion energy model in same format as in Fig. 3. B,C same separable front-end filters as in the
Reichardt model (Fig. 3). (D,I) addition of filter outputs, rather than multiplication in Fig. 3D. creates inseparable linear filters that
are shifted in both spatial and temporal phase relative to each other by 90°, i.e they are in spatiotemporal quadrature. (E,J) Squaring
retains much of the oblique orientation, and generates DS 2-bar interactions that are inseparable. (F) Combination of the squared
outputs from quadrature partners generates agreement with both 1- and 2-bar physiological measurements in H. The smaller extent
of model 1-bar responses, however, suggests multiple subunits in the complex cell. (G) Combination with output of a mirror-
symmetric energy model generates responses that are identical to those of the Reichardt model in Fig. 3E, and inconsistent with the
observed responses. (H) Cortical measurements agree with model results only at the unidirectional energy stage of F because of
basic symmetry differences with other stages of the energy model. All data plotted with six contours, except that F, left, G, and H, left

used five contours, E, left and J needed eight contours.

The stages following the squaring operations, shown in
Fig. 4E,J are the first stages to generate a nonlinear
interaction. The interaction roughly resembles that at the
unidirectional energy stage (F-right), which matches        
the measured cortical response (H-right), but the 1-bar
responses  in  E-left and  J  display  incorrect  predictions  of

spatiotemporal structure. The problem is solved in the
unidirectional energy response, shown in F-left, by sum-
ming the two squared responses to give a phase-indepen-   
dent measure of unidirectional motion energy. The decay
period of the temporal function in equation (1) was       
chosen  to  ensure  that  the  duration  of  modeled  1-bar  re-
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sponses matched the cortical responses, and the spatial      
and temporal oscillation-period matched those of the
measured  2-bar  interactions.

The 2-bar interactions shown in Fig. 4E,F (right),
however, retain the phase dependence of the input filters       
in D-left and I, because initial summation of the two         
bar-responses occurs before the squaring operation. The
augmentation and cancellation at the two phases of the input
filters from which the two 1-bar responses are sampled
creates the interaction. The preferred velocities implied
separately by the slopes of the oriented domains in the 1-bar
test of D-left vs the 2-bar test of E-right (both in °/sec) agree
with each other because the slope values are inversely
related. That is, the arbitrary ∆S-convention that we chose
for 2-bar interactions dictates an upward directional preference
for positive slopes, in agreement with the enhanced
modulation from upward moving images convolved with
filters having negative 1-bar filter slopes (D-left and 1; cf.
Fig. 7 of Adelson & Bergen, 1985). The unidirectional
energy stage, F, is labeled "upward" here, but obviously
could refer to any movement direction, depending on the
spatially 2D orientation of the input filters.

The major result of this study is the satisfying agreement
between modeled 1- and 2-bar responses in Fig. 4F, with
cortical responses of H, measured with the same DS
complex cell as shown in Figs. 1 and 2. As shown in
Appendix A, the similarity between modeled and measured
2-bar interactions, made more reliable by averaging across
space, indicates that the autocorrelation functions of the
subunit filters are similar. Therefore, the spatiotemporal
periodicity (frequency response) and spatial extent of
complex-cell RF-subunits match those of the model subunit
filters in Fig. 4B-D,I. But if the complex cell had only a
single pair of subunit filters, such as those in the single-
subunit model of Fig. 4, then the vertical extent of its 1-bar
response in H would match that of F. Its larger extent is
strong evidence that complex cells use pooling from an array
of spatially distributed subunits (corroborating Fig. 8 of
Movshon, Thompson & Tolhurst, 1978; and Fig. 3 of
Emerson et al., 1987b; also see Discussion here). Except for
this difference in spatial extent of 1-bar responses, and minor
differences in shapes of contour domains, it appears that the
energy model provides an excellent representation of DS
cortical responses to our 1- and 2-bar tests.

Finally, the output of an opponent formulation of two
basic energy models is shown in Fig. 4G. This is the site at
which the response is equivalent to the output of the
Reichardt model. After subtracting the response from a
mirror-symmetric, downward-selective energy unit coming
from the left (structure not detailed), the 1-bar test elicits no
response at all, which differs from both the measured cortical
response and the modeled unidirectional energy response.
This lack of 1-bar responses occurs because the opponent
combination represents the difference between the energy
term for each direction; and flashing bars, counterphase-
modulated gratings, and many similar stimuli exhibit equal
upward and downward energy.

Even more significant is the discrepancy in shape of the
2-bar opponent interaction in G-right from measured and
modeled unidirectional results. As in the Reichardt model of
Fig. 3E, downward motion is predicted to elicit strong
negative responses. On the other hand, measured downward
responses of Fig. 1A and corresponding measured
interactions that would be integrated along a trajectory with a
negative slope in Fig. 4H-right, indicate approximately zero
response. Adelson and Bergen (1985), and van Santen and
Sperling (1985) have pointed out that the similarity between
opponent responses in an opponent formulation of energy
models (Fig. 4G) and the Reichardt model (Fig. 3E) reduces
to a formal equivalence when, as here, the models are built
with appropriate spatial and temporal filters. However, the
basic (unidirectional) motion-energy stage has no equivalent
in the Reichardt model. and the only location in the energy
model at which both 1- and 2-bar tests agree with the
physiology is at the unidirectional energy stage shown in
Fig. 4F.

The Reichardt model, like the opponent formulation of
two energy models, takes the difference between two halves
as its final step. But the signals being subtracted are quite
different in the two cases. In the opponent formulation of
energy models, the penultimate signals are phase-indepen-
dent, non-opponent (unidirectional) motion signals; in the
Reichardt model, they are phase-dependent and motion-
opponent signals. In the opponent version of the energy
model, the final stage produces opponency; in the Reichardt
model, the opponency is present from the start, and the final
stage produces phase-independence.

DISCUSSION

We have used a pair of sensitive tests to compare
measured directionally selective (DS) complex cells in the
striate cortex of the cat with the performance of two motion
models on these same tests. Motion sequences elicit DS
responses in a large proportion of cortical neurons (Emerson
& Coleman, 1981), and in both models, but responses to 1-
and 2-bar tests differ considerably between the two models.

The range of complex-cell responses

Before exploring physiological implications and com-
paring models, it is helpful to know the range of cortical  
cell properties one encounters. Of the five DS out of      
seven complex cells studied in detail, Fig. 5A is the most
similar, and B is the most different from the unit    
illustrated in Figs 3 and 4. The two remaining DS cells
resembled Fig. 5A. The chief difference between the cell      
in Fig. 5B and all of the others is a lack of an intensive
nonlinearity at the point where ∆S = ∆τ  = 0. This lack         
of a purely intensive nonlinearity indicates a departure      
from a pure squaring operation, and may signify a      
strong saturation at otherwise large output amplitudes.     
Note also the large slope value for interaction domains         
in B. which indicates that this unit should have a higher
preferred  speed  than  the  unit  in  A.  Differences  aside, all   
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FIGURE 5. Other directionally selective complex cells. (A) 2-bar
interaction for complex-family "B" cell (Henry et al., 1978) number 6-6-
32 represents 4 of the 5 DS complex cells studied extensively. Interaction
was averaged over six active positions of the RF, and summed over an 80-
msec τ-period after the second stimulus. Note similarity to plots of Figs 2D
and 4H, right. Range of raw kernel values: - 3.14 to +2.54/sec in five
negative contours (not normalized for temporal or spatial averaging). (B)
2-bar interaction for B-cell number 6-2-6. Interaction was averaged over
six active positions of the RF, and was summed over a 48-msec τ-period
beginning 32 msec after the second stimulus. Chief differences from A
are higher preferred speed and small intensive nonlinearity (at ∆S = ∆τ =
0, see text). Range of raw kernel values: -0.748 to +1.38/sec in five
positive  contours.  Measurements for each cell  represent 6.5 min  of ran-

dom-stimulus presentation.

five units show elongated, obliquely oriented domains,
whose slopes agree with their preferred direction.

This oriented Gabor-like structure in space vs time is   
the signature of a nonlinear filter that is space-time
inseparable, and has certain correlates in the frequency
domain, as discussed by Daugman (1985), and Emerson et
al. (1987b). All the energy lies in either the odd or even
quadrants, which limits neural responses to a range of spatial
and temporal frequencies for motion in one direction,
showing no response for the null direction. That is, the
neuron is a unidirectional spatiotemporal filter both in space-
time and in frequency, but does not respond to image
velocity per se, independently of spatial and temporal
frequency (Fig. 10 of Watson & Ahumada, 1983; Fig. 11    
of Adelson & Bergen, 1985; and Fig. 8 of McKee,
Nakayama & Silverman, 1986). Hamilton et al. (1989,       
p. 1290), and Emerson et al. (1987b, p. 49) each have
discussed how the spatiotemporal filters can be inseparable
in either space-time or 4-quadrant frequency domains,        
but appear separable in frequency when only, one     
frequency-quadrant  is  viewed  (for  the  preferred  direction).

The spatial-subunit makeup of DS complex cells

The disparity in spatial extent between modeled and
measured 1-bar responses in left sides of Fig. 4F vs          
H  indicates  that  DS  complex  cells  have  more  than  one

spatial subunit in their RFs, because our matching of     
model 2-bar interactions to measured ones constrains       
the size but not the number of the model subunits. To
determine the minimal number of subunits that would
explain the spatially broad complex-cell responses we      
have generated a quantitative prediction in Fig. 6B for        
the measured 1-bar responses of Fig. 6A as the coursest      
set of equally separated subunits of the shape shown in    
Fig. 4F-left that would smoothly approximate the physio-
logical measurement. Availability of 2-bar measurements
provides a rare opportunity to investigate the conver-      
gence of RF subunits at one stage onto the next. With          
a spatial resolution that is twice that of the physiological
measurement, the model of Fig. 6B shows that it was
necessary to have at least four subunits, each separated       
by one spatial step of the physiological measurement      
(e.g. 1.5 steps was too coarse). Because the decay-time,       
1/k, of the model filters in Fig. 4B,C was chosen slightly
too long,  it  was  decreased by  10%  for  this  figure  only.

FIGURE 6. Constitution of complex-cell spatial subunits. (A) Measured
1-bar response for C-cell number 1-3. Parameters of Fig. 4H, left, except
that all plots here used six contours. (B)  Modeled responses for 1-bar
upward motion-energy responses of Fig. 4F, left. but replicated four times
in space, with a constant separation of one physiological position (two
model posi-tions). Responses are  similar to physiological measurement of
A, but required that the separable-filter time-constant (1/k) be shortened
from 0.67 in Fig. 4 to 0.60 to better match the physiological decay period.
(C) Same geometry as above, except with squared upward response of Fig
4E, left, the squared output of the spatially even-symmetric inseparable
upward filter. Some of the oblique orientation in contours of Fig. 4E, left,
survived the  spatial  pooling, but  differences among  A,  B, and C are  too

small  to  distinguish reliably  between the  two models.
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Of  course, more subunits over the same spatial extent
would be indistinguishable from the coarsest set, and      
would  only  dictate  more  overlap  between  each  subunit.

Once we admit that a cortical cell pools information from
a number of spatial subunits, we must consider whether the
phase independence in our 1-bar measurements now requires
the odd-even inseparable filter-pairs of the energy model
shown in Figs 40-left, I, and schematized in Fig. 4A. For
example, in another system (the lobular plate of the fly),
Egelhaaf and colleagues (Egelhaaf & Reichardt, 1987; Borst
& Egelhaaf, 1989) have shown that spatial integration         
of like-subunits that are distributed over space performs      
the same function, removing the phase-dependence of earlier
stages. We already know that the lack of agreement in        
the 2-bar interactions of separable models such as the
Reichardt model removes its connectivity from consideration
in the striate cortex, because the 2-bar interactions we      
have measured and modeled reflect the properties of the
subunits themselves, independently of how they are pooled.
But to determine whether pooling of the single squared     
1-bar response of the spatially even-symmetric upward filter
in Fig. 4E-left could also explain 1-bar responses of        
Fig. 6A, we have modeled in Fig. 6C the same squared
response, integrated over the same coarse spatial array         
as shown in Fig. 6B. Although the model of Fig. 6C retains
more of the oblique orientation of the subunit's           
squared response than the model of B, the similarity of       
the models and the noise in the cortical measurement of Fig.
6A preclude a reliable assessment of the need for sum-
mation of pairs of squared subunits with quadrature phase.

It should not be surprising that 2-bar interactions        
for pooled, shifted versions of single or paired quadra-     
ture filters are similar, because the autocorrelation prop-
erties of the linear quadrature-pair filters (Fig. 4D-left,                  
I) are similar. We know this because Appendix A        
shows that spatially averaged 2-bar interactions in        
right sides of Fig. 4E,F are simply the average auto-
correlation functions of the single or combined filters,
respectively; and those 2-bar interactions are similar.       
To examine still further the correspondence between
physiology and the model, we have investigated the        
third dimension, τ  (the time-course of the interaction),  
which is present in Fig. 2C, but missing in all other 2-bar
interactions shown here. As mentioned above in the    
context of suppressing this variable to allow spatiotem-
poral plots, the time course of physiological interactions     
for a single pair of positions is found to be independent     
of the temporal separation. ∆τ . This property leads to
separable 2-bar interactions when they are plotted in ∆τ        
vs τ  (Fig. 2 of Emerson & Vaughn, 1987), and as it turns
out, characterizes models with either the single-subunit
quadrature-pair of Fig. 4F, or the four-subunit models      
based on Figs 4E-left or J (not shown). This separability   
can not be mimicked by any single linear-               
nonlinear sequence of operations; and yet it is fully  
explained by the convergence of a single pair of            
model spatiotemporal filters in quadrature. The sig-      
nificance  of  this  observation  is that  because  the  physio-

logical and the model 2-bar interactions have the same
recourse as the 1-bar responses, they contribute no time-
course of their own. but rather modulate the amplitude or
gain of the response to the second bar (see Larkin, Klein,
Ogden & Fender, 1979), increasing it for sequences in the
preferred direction, and decreasing it for the null direction.
Apparently convergence of as few as two different phases is
an effective way of modulating the response amplitude       
for movements in opposite directions without changing the
time-course (see Fig. 1H of Emerson & Citron, 1991,        
for contributions of these spatiotemporal "kernels" to the
shapes of movement predictions, even in simple cells).

This fit of the model over all three dimensions suggests
that spatial pooling, after squaring of a broad variety of
possible space-time inseparable subunits could explain
cortical-cell responses. This conclusion, in turn, suggests
that in the cortex, the definition of the energy model should
be broadened to include squaring of space-time inseparable
subunits that may be shifted in spatial phase (position),
rather than having explicit spatiotemporal quadrature.

Geniculocortical calculation of motion energy

An important function of a well-fitting model is to
suggest ways in which the geniculocortical physiology
might actually compute these spatiotemporal and inten-    
sive transformations. Retinal RFs could account for the
spatial properties of the basic energy model (though this
need not be the case), and we believe that the temporal  
phase lag may be provided to the cortex by so called  
"lagged" X and Y cells, described in the cat's lateral
geniculate nucleus by Mastronarde (1987a.b), and by
Humphrey and colleagues (Humphrey & Weller,         
1988a,b; and Saul & Humphrey, 1990). The nonlinear
intensive transformation, the squaring operation, could        
be accomplished easily as shown in Fig. 7A, by applying      
a gradual or "soft" threshold (e.g. a half-squarer com-       
posed of a half-wave rectifier followed by a squarer) to
inverted and noninverted versions of the appropri-          
ate signals. Recent systems identification approaches  
suggest that neural threshold functions in simple cells  
might actually approach half-squarers (Emerson,     
Korenberg & Citron, 1988, 1989), and that complex       
cells approximate a full-squaring operation (Emerson,
Korenberg & Citron, 1990a,b, 1992). Pollen, Gaska and
Jacobson (1989) also have used half-squarers in a       
proposed quadrature complex-cell model. Heeger (1991)      
has discussed a useful application of half-squarers,     
especially  in  conjunction  with  a  contrast  gain-control.

In light of the above discussion about the phase  
properties of constituent subunits, the needed quadra-        
ture phase-shifts in space, and even the phase inversions,
might be accomplished by soft-thresholding the outputs       
of appropriately shifted spatial samples from periodic     
spatial filters. The chief impact of adding modeling      
studies to our physiological measurements has been to
simplify vastly our interpretation of seemingly compli-    
cated nonlinear spatiotemporal interactions in complex     
cells  by  showing  that  a natural  nonlinear  transformation
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FIGURE 7. Illustration of a possible squaring mechanism and of the relationship in connectivity between the Reichardt and
energy models. (A) A combination of inversion and static nonlinearity shows how a threshold-like half-squaring function could
be used to carry out the neural squaring operation. This transformation could be as simple as passing signals of appropriate sign
through cortical neurons whose spike-firing characteristics have a gradual onset. (B,C) A single exchange between connections
of an opponent combination of energy models B is capable of generating both the pure product terms needed at the  half-detector

stage and the fully opponent output  signal of the Reichardt model C. For details see text of Appendix B.

such as a threshold  may generate these phenomena by
following a linear space-time inseparable filter. The       
neural identity of these inseparable spatiotemporal filters      
is  our  last  subject  of  discussion.

Results shown here and elsewhere have established           
a need in all DS complex cells for a family of early
inseparable  filters'  whose  properties   then   appear  in  the

2-bar interactions because of later-occurring nonlineari-    
ties. The lone account that dissents from this principle
(Baker & Cynader, 1988) was an interaction experiment
with two conventional bars. Any 2-bar measurements       
that employ subtraction of null-sequence responses from
preferred-sequence responses (their Figs  3B, 4B & 5)         
can  cancel   underlying  inseparable  spatiotemporal  interac-
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tions, as has been discussed already (pp. 49-50 & 56           
of Emerson et al., 1987b). However, we also have examined
the relatively separable raw interaction data for their Figs 3A
and 4A, which were calculated with the correct procedure of
subtracting the explicitly measured 1-bar responses. A
discrepancy remains between their separable and our
inseparable interactions; it may be caused by a difference in
operating points between their conventional flashing-bars
and our white-noise experiments. Recent evidence from
experiments with drifting gratings, which we believe to
establish a highly adapted operating point similar to that in
the white-noise experiment, supports the dependence of DS
on inseparable filters in striate neurons of both cat and
monkey (Hamilton et al., 1989). Figure 7B,C shows the
relationships between motion-opponent (separable) combin-
ations of basic energy models and the Reichardt model, and
Appendix B provides a more quantitative comparison
between the two models.

Although we have demonstrated inseparable subunits in
DS complex cells, it is not obvious whether these filters
correspond to distinct recordable cells, or are incorporated
into the connectivity and dendritic organization of the
cortical cell. On the one hand, DS simple cells would seem
to make ideal candidates for this function, because of
demonstrations of inseparable 1-bar responses in the cat
(Reid et al., 1987; McLean & Palmer, 1988, 1989). Simple
cells even show the required range of spatial phases to
generate quadrature (Pollen & Ronner 1981; Field &
Tolhurst, 19B61. And in the monkey, recent measurements
of DS simple cells in Vl also suggest spatiotemporal
inseparability in 1-bar responses (Jacobson, Gaska, Chen &
Pollen, 1989), and agree with an inseparable linear quadrature
model preceding any of the nonlinearities in simple cells
(Hamilton et al., 1989).

On the other hand, linear space-time inseparable models
(e.g. Reid et al., 1987) seem to account for only about half
of the DS measured in simple cells. A demonstration of
simple-cell DS without a significant contribution from
inseparable 1-bar filters would support the likely nonlinear
generation of DS directly from LGN afferents, because
simple cells are presumably first-order cortical neurons. We
have found that among nine DS simple cells examined, five
showed no obvious inseparability in their 1-bar responses
(Emerson & Citron 1988, 1989, 1992). Furthermore all 14
DS units studied, whether complex or simple, showed
inseparable 2-bar nonlinear interactions of the appropriate
slope. This association of DS with inseparable nonlinear
subunits, and the absence of DS at the preceding LGN stage
suggests that generation of these space-time inseparable
subunits may occur independently of any explicitly
recordable cortical cell-type that shows the 1-bar properties
of a single inseparable subunit. Generation of these
inseparable nonlinear subunits for computing motion energy
in both simple and complex cells is apparently an important
general function of the visual cortex.

SUMMARY

1. Many models have been proposed for directionally
selective (DS) cells in striate cortex. It has been proposed
that initial stages of DS could be created by the action of
linear filters that are spatiotemporally oriented; and several
investigators have reported recordings in DS simple cells
that are consistent with this function. It has also been argued
that phase independence of the sort observed in DS complex
cells could be achieved by a motion-energy computation, in
which the outputs of linear units in the quadrature phase are
squared and summed (Adelson & Bergen, 1985).

2. We have tested DS complex cells in the cat with
random flashing bars, and have found that the responses are
in good agreement with those predicted by a basic (non-
opponent) motion energy model. Both the 1-bar responses
and the 2-bar interactions behave in a manner consistent with
such a model.

3. We have also tested the predictions of the classic
Reichardt model [modified with prefilters as suggested by
van Santen & Sperling (1985)]. This model's predictions are
not consistent with measurements of either the 1-bar
responses or the 2-bar interactions.

4. Both models have several stages, and the experimental
methods allow us to test each stage as a candidate model for
the DS complex cell. No stage of the classic Reichardt
computation is consistent with the DS cell responses, and
only a single stage of the energy model is consistent. The
broad spatial distribution of subunits in complex cells
obscures the phases of individual subunits, but leaves intact
the requirement for inseparable filters and for the squaring
operation, both provided by the basic motion-energy unit.

5. It is possible to create a fully opponent version of the
motion-energy model by placing two basic motion-energy
units in a push-pull configuration (Fig. 7B). In this case the
opponent energy system would become equivalent to a full
Reichardt model (Fig. 3E and 7C). However, such a
computation is not consistent with what we observe in
striate cortex.
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APPENDIX A

The 2-bar Interaction of a Quadratic System is a Spatiotemporal
Autocorrelation Function

In this section we prove a general result concerning the
structure of the second-order kernel of a second-order mech-
anism, one whose output is the sum of the squares of the outputs
of a family of linear subunits. Let Ri be a set of n linear subunits
with impulse responses Li(s,t); that is, for an input I(s, t):

R t L s I s t dsdi i( ) = ( ) −( )
−∞

∞∞

∫∫ , ,τ τ τ
0

Let

E t R ti

n

( ) = ( )[ ]
=
∑ 2

1 0

be the output of the mechanism. For a system of this kind, the
second-order Wiener kernel and the second-order Volterra kernel
are both equal to the second-order superposition residual, K2

(Marmarellis & Marmarellis, 1978, pp. 148-153; Schetzen,
1980. pp. 38-45). If we let E1(t; s0, τ0) be the output of the
mechanism in response to an impulse input at position s0, and
time τ0, and E2(t; s0, τ0, s1, τ1) be the response of the mechanism

to a pair of impulses occurring at (s0, τ0) and (s1, τ1). then the
second-order residual is defined as
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∞

−∞

∞

∫∫ τ τ τ
− − + +E s E s s dsdt1 10 0( ; , ) ( ; , )τ τ τ∆ ∆

In this section we prove that K2, is just the sum of the
spatiotemporal autocorrelation functions of the linear subunits.
Formally
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Proof:

Let Ri(t; s0, τ0) be tbe response of subunit i to an impulse

input.at position s0 and time τ0. Then
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Let Ri(t; s0, τ 0, s1, τ1) be the response of subunit i to a pair of

impulses occurring at (s0, τ0) and (s1, τ1). By superposition:
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From these definitions, it follows that:
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This result is independent of the nature of the functions Li.
However, as a special case it specifies that if the functions Li,
consist of a pair of filters in quadrature phase, or are a set of
shifted versions of the same function, then the second-order
kernel is just the autocorrelation function of this filter. Note
that this result also implies that even if the input filters do not
have precisely equal power spectra, for example in the case of
odd- and even-phase gabor functions, then the second-order
kernel is just the average of the various autocorrelation
functions. Furthermore, since the second-order kernel depends
only on the autocorrelation functions of the linear subunits and
not on their spatial distribution, it contains no information
about such factors as number, extent of spatial pooling, or
degree of overlap of the subunits.
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APPENDIX B

Computational Comparison Between Reichardt and Energy
Models

Figure 7A shows how easily a neuron could effect the squaring
operation needed for calculating motion energy. But the
nonlinear transformation in the Reichardt model is also of
second degree, and appears to be closely related. One could argue
that if a squaring operation is available then so is the product
function of the Reichardt model because of the cross product
generated by squaring a sum: (A' + B)2 = A'2 + B2 + 2     A        'B     . The
converse may not be true, however, because of the missing
squared terms (see below).

In Fig. 7B is shown schematically an opponent combination
of two basic energy units, such as in Fig. 7A, but connected in
push-pull, the left unit preferring downward motion. To show
that the basic structure of this energy model is not only
physiologically realizable, but is also composed of general
enough building-blocks to accommodate other configurations,
we have expressed in Fig. C the entire opponent Reichardt
model as a bilateral reconnection of only two paths between the
pair of unidirectional energy units in B. A single exchange
between outputs of the two inner ( )2 boxes in B, and the
resulting inversion in weighting of the new connections
necessary to retain the same output signal from the opponent
combination are the only requirements to produce not only the
fully opponent output signal (Fig. 3E), but also the pure cross-
product terms, 4A'B and 4AB', that provide the signature of the
Reichardt half-detector Fig. 3D.

This observation underscores the seemingly trivial  difference

in connectivity between the two models, but  at the same time,
illustrates the importance of the pure squared terms. A2+ A'2+
B2+B'2, shown at the right side of Fig. 7B for the unidirectional
energy model. These terms produce, spatially, an approximately
Gaussian shaped ''pillow'' on which ride the opponent 2-bar
interactions of Fig. 3D,E (right). This positive pillow cancels
the otherwise purely negative interactions for the null direction
(that would be integrated over a trajectory with a negative slope
in an opponent model (Fig. 3E right) for downward movement),
which creates the unidirectional property of the energy model.
This property may be critical for the successful performance of
the visual system, as suggested by the success of Heeger's
(1987) spatially 2D model for extracting image flow. It was
built from unidirectional energy subunits, instead of depending
on the opponent-energy signal available from a Reichardt
computation.

Note that although the Reichardt detector is not a good model
for DS complex cells in the striate cortex of the cat, its
appropriateness in other systems remains an open question. For
example, Maunsell and Van Essen (1983) have found that some
DS neurons in MT of the monkey show inhibition of the
background firing rate for motion in the null direction. Further,
Andersen, Snowden, Treue and Graziano (1990) have found mild
suppression of preferred-direction responses by null-direction
motion that occurs during motion of a transparent cylinder. This
mild opponency in MT may be multiplicative rather than
subtractive, but is likely to be generated by a combination of
separate motionenergy signals originating in Vl, because DS
cells in Vl of both monkey and cat are known to be
unidirectional (Anderson et al., 1990, Emerson et al., 1987b),
and monkey MT receives strong input from Vl.


