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ABSTRACT

The perception of objects  is a well-developed field, but the perception of materials has been studied rather

little. This is surprising given how important materials are for humans, and how important they must

become for intelligent robots. We may  learn something by looking at other fields in which material

appearance is recognized as important. Classical artists were highly skilled at generating convincing

materials. The simulation of material appearance is a topic of great importance in 3-D computer graphics.

Some fields, such as mineralogy, use the concept of a habit,  which is a combination of shape and

texture, and which may be used for characterizing certain objects or materials.  We have recently taken steps

toward material recognition by machines, using techniques derived from the domain of texture analysis.
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INTRODUCTION: THINGS AND STUFF

Ask someone what vision is for and you may get an answer about recognizing objects.  Few people will

tell you that vision is about recognizing materials.  Yet materials are just as important as objects are.  Our

world involves steel and glass, paper and plastic, food and drink, leather and lace, ice and snow, not to

mention blood sweat and tears.  Nonetheless, if you peruse the scientific literature in human and machine

vision, you will also find a great deal of attention paid to the problem of recognizing objects, and very

little to the problem of recognizing materials. Why should this be?

Perhaps it is related to the general preference we have for talking about things  rather than stuff.

Linguists distinguish count nouns, such as chairs, from mass nouns, such as snow. Chairs are objects that

can be counted, while snow is a material of unspecified extent.  Our world contains both things and stuff,

but things tend to get the attention.  This prejudice is certainly true in perception. Even at the low-level

stages of vision, Julesz speaks of his textons as the quarks of vision,  and Marr built his primal sketch on

lists of individuated edges and blobs. There seems to be a desire to put vision on a firm foundation by

emulating particle physics. However, classical physics is built on stuff (e.g. mass, heat, entropy), and

Adelson and Bergen[1] have argued that early vision can be thought of as the extraction of stuffish

properties in an image. As we get to high-level vision, physical materials become important, and they

deserve more attention than they have received.

THE IMPORTANCE OF MATERIALS

To appreciate the ubiquitous importance of materials in everyday life, one can survey the advertisements in

a magazine.  Here is an ad for skin cream, or for silk scarves, or for milk, or for perfume, or for house

paint, or for eye shadow, or for laundry detergent. Consider the detergent: it is a material (detergent) that

removes another material (dirt) from a third material (fabric). It improves the fabric s looks, and in

addition, it may influence a fabric s mechanical properties, such as softness and flexibility, and even

electrical properties such as static cling.  Similarly, shampoo may give hair a silky shiny look,  and

extra body,  i.e., it may modify the optical and the mechanical properties.

Looking in a recent issue of a consumer magazine I found articles about iced tea, lipstick, paint, and glue.

These are just a few of the materials that pervade our lives.  We often care about a great many details of a

material s properties.  For example, here is how the magazine described one brand of lipstick: Ultima II

Lipsexxxy Lipcolor (sheen/frost).   Felt creamy while applying but became powdery as it "dried." Easy to

apply, blot-resistant, matte, opaque, not slippery.  Felt light on lips.  Slightly easier to launder than

others.  In this short description, numerous optical, mechanical, and chemical properties are discussed, and

they are all important to the purchaser. Another magazine has a review of salami, and it describes Marco
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Polo brand: Dull appearance, slightly slimy mouth feel; good tasting though quite salty.   Again, optical,

mechanical, and chemical descriptors are used.

Do we simply care about materials because we are made of flesh, and have to eat food, wear clothes, and

excrete body fluids? How would a robot feel? If it were a legged robot that walked over terrain, it would

need to figure out what it was walking on.  The walking technique will differ for grass, mud, gravel, or

concrete.  Suppose the robot is lucky enough to be walking on a concrete sidewalk, and it sees a dark patch

ahead.  Is it a patch of asphalt?  A puddle of water? A patch of clear ice? The answer may be critical.

Another example: if a robot colony is set up on Mars to build a factory, it must mine the right materials

and process them correctly.

Closer to home, suppose we have a domestic robot that will clean up the kitchen, and suppose that this

robot encounters a patch of white stuff on the floor.  It might be spilled milk, a crumpled napkin, a pile of

flour, or some cream cheese.  In each case the robot must use the appropriate cleaning technique.  A sponge

will be useful for the milk but not for the crumpled napkin.  A vacuum cleaner will deal nicely with the

flour but not with cream cheese.  The robot should be able recognize the materials, just as we can, and it

should be able to reason about their physical properties before handling them

Figure 1. A child can recognize a complex material such as ice cream, based on its optical and mechanical

properties.  Today s machine vision systems can recognize certain objects, but are rarely useful in

recognizing materials.

ASSESSING MATERIAL PROPERTIES

Humans can infer material properties using all the senses.  Wool has a certain look and a certain feel, and

when wet it has a certain smell.  To test whether a wall is solid wood or mere paneling, we can knock on it

and listen to the sound. We may squeeze a pear to decide whether it is ripe, and then verify our judgment

with the taste and texture when we bite into it.

The use of multiple information sources is formalized in mineralogy. The mineralogist in the field can

characterize a mineral by numerous means, including scratching it, fracturing it, heating it, and tasting it.

Here are the properties of carnallite, as described in a field guide for rocks and minerals: Soft (2.5), no

cleavage, but has conchoidal fracture.  Transparent with vitreous or greasy luster.  Extremely

phosphorescent.  As it is deliquescent it disintegrates quickly if exposed to air.  Very soluble in water.

Has a bitter salty taste.  Fuses easily, turning the flame violet (potassium).

The present paper is about vision, so it is interesting to consider the vocabularies that have been developed

for the visual appearance of materials in various fields.  In identifying rocks and minerals, a mineralogist

will describe the luster (meaning the optical quality of the surface), with words like resinous (like plastic),

adamantine (like diamond), greasy, pearly, silky, vitreous (glassy), metallic, submetallic, dull, earthy, or

chatoyent (like a cat’s eye).  When broken, the fracture may be described as uneven, conchoidal (shell-like),

hackly (like cast iron), or splintery. In addition, rocks and minerals have habits,  which are descriptions of

their typical forms.  They include prismatic, massive (no particular form), acicular (needle-like), reniform

(kidney-like spherules), bladed, dendritic, granular, fibrous, encrusting, colloform, porous, concretionary,
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botryoidal (like grape-bunches), foliated (leaves or layers), scaly, felted, hairlike, stalactitic, nodular,

columnar, plumose (feathery), microcrystalline, platy (flat thin plates), reticulated, lamellar, mammillary,

saccharoidal (like sugar), ameboid, oolitic, or pisolitic.

Few of us have a visual vocabulary that is as formalized as the mineralogist s, but we are all experts at

stuff perception  from an early age.  What would childhood be without mud, snow, or peanut butter?  If

we are to emulate human vision with computer systems, we have a long way to go.  Because machine

vision has concentrated on objects, to the neglect of materials apperance we have the situation shown in the

cartoon in figure 1. The human boy is delighted to see the ice cream, which he immediately recognizes

based on its visual appearance.  The robot, however, has spent its life learning to identify objects, and

hasn t a clue about ice cream. It probably can t even mis-identify the ice cream because it lacks the concept

of a material in the first place.  The best it can do is tell us about the spoon.

A science of material perception would be helpful in many fields that depend on images. For example,

when a satellite sends back images of the Martian surface, planetary scientists look at the pictures and try

to figure out what the materials are, and what physical processes have acted upon them. Figure 2 shows a

recent set of Mars photographs that indicate a history of erosion, perhaps by water formerly on the surface.

At present, the main way to interpret such images is to show them to a trained individual and ask what

does this look like to you?

Figure 2. Mars terrain photos obtained by satellite.  The appearance of the surface suggests a history of

erosion.

WHAT CAN VISION DETERMINE ABOUT MATERIALS?

Optical and mechanical properties are perhaps the major ones we infer by looking at pictures.  Consider the

object shown on the left in Fig. 3.  You may recognize it as a bottle opener. Even if you don’t recognize

the object, you can make a pretty good guess as to its shape and its material.  It appears to be made of a

shiny metal like steel.  You can guess that if you pick it up it will feel hard, rigid, and slightly cold.  You

can guess that if you use it to open a bottle, it will be strong enough to hold its shape.  Of course, you

might be wrong: it might be made of plastic that has been plated with a silvery coating.  But most of the

time you guess right about materials, just as most of the time you guess right about object shape and

identity.

The image of an object results from a combination of the surface shape, the surface reflectance, the

distribution of lights in the environment, and the observer s point of view.  Untangling these multiple

sources to retrieve shape and reflectance is an amazing feat.
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Figure 3: Left: a metal bottle opener.  By looking at it, one can estimate its shape, as well as the optical

properties of its surface. Right: a chrome-plated sphere shown in two settings. The pattern within each

image is entirely different, but each gives the impression of a mirror-like material.

As in most of vision, material perception is automatic and effortless, and therefore may seem initially like

an easy problem. However, it is hard.  One of the inherent difficulties is shown by  the two pictures of

spheres on the right.  Even though these are both the same shape, and even though they’re made of the

same material, they produce entirely differ patterns of light in the image.  A chrome-plated sphere simply

reflects the world around it, as a distorted image.  Thus, every time you see one it looks completely

different (at the pixel level) from all the other chrome spheres you have seen in the past.  Yet there is

something about it that looks the same

Now most people are completely unaware that every time they see a chrome sphere they are seeing a picture

of the room, with a little picture of themselves right in the middle.  The sphere just looks like shiny

metal.  Even though every pixel can be traced to a point in the surrounding room, the metallic quality

seems to lie in the sphere itself[2]. There is no way to extract this property through a local operation, since

it depends on the full pattern.  And of course, there is no way to proceed with a template match as one

might do in recognizing, say, the letter A.  Instead there is some sort of quasi-textural quality that is

common to the many pictures of chrome spheres.

The problem is not unique to the mirror-like chrome surface.  Consider the three spheres shown in fig. 4.

The first has a mirror surface.  If such a surface is roughened on a fine scale, the reflected image becomes

blurred.  In the simplest model, we can consider that each point on the sphere is taking a weighted average

of the pixel values in the world over some angle.  The simplest idea is that our little sphere is surrounded

by a big outer sphere, which is the world as seen from the little sphere. The big sphere s pixel values are

convolved with a blurring function and mapped to the appropriate location on the little sphere s surface and

projected to form the image.  (The big sphere is sometimes called an environment map). The same

convolution model holds for matte surfaces as well.  In the case of a Lambertian surface, each point on the

sphere takes an average over a full hemisphere. (Note that the Lambertian hemisphere is centered on the

normal to the sphere s surface, while the blurring function for the roughened metal is centered on an angle

twice as large, so the two processes cannot be reduced to a single convolution).

The point is that the appearance of every sphere depends on the environment in which it is viewed, and

sometimes this dependence is so great that it would seem hopeless to make sense of the sphere s reflectance

properties without knowing the environment first.  Yet for humans, this task seems fairly easy.

Figure 4. Three spheres, photographed in the same room with the same lighting.
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The problem of recognizing a surface s reflectance qualities is in some ways similar to the problem of

recognizing a texture.  Suppose we have a Gaussian process that generates images of white noise. Each

noise image will be completely different from the other noise images at a pixel level, but will look much

the same at a textural level.  Each image is a sample from the same random process, and its appearance

depends on the parameters of that random process.  The same is true for a sphere photographed in a

randomly selected environment.  The sphere-plus-environment process generates the image. The world

around us has certain statistical qualities, and the sphere s reflectance parameters map these into image

qualities.

In unusual settings, we can be fooled.  For example, a shiny surface will not look very shiny if

photographed in an environment with broad diffuse illumination.  Portrait photographers use large diffuse

light sources when they want to minimize the shine of the skin.  This trick also minimizes the visibility of

wrinkles.

CONFIGURATION AND CONTEXT

To fully characterize the reflectance properties of a point on a surface, one must determine the bi-directional

reflectance distribution function (BRDF). This is a function of four continuous variables that describes the

relative intensity of light emerging in every direction for each possible incident angle.  It can be a huge and

hopelessly complex function. Fortunately, many materials can be approximately described with very

simple BRDF s.  Perhaps the simplest example is the Lambertian surface, an ideal matte surface that

reflects light uniformly in all directions regardless of the angle of incidence.

A Lambertian surface has only one parameter, which is its albedo: the percentage of incident light that is

reflected.  Thus, describing the albedos in a scene amounts to assigning a scalar to each point. However,

even though albedo may be defined as a pointwise physical property, it cannot be computed from an image

using a pointwise calculation.  The larger context is essential.  Consider the image[3] on the left of fig. 5.

The cylinder casts a fuzzy shadow onto the checkerboard.  The actual gray shade of the white square in the

shadow is the same as the gray shade of the dark squares outside the shadow (i.e., the pixel intensities are

the same in the image).  This powerful illusion results from the operation of the lightness constancy

mechanisms, which seek to determine the albedo of the surface in the scene, and to ignore the albedo of the

pixels in the image.  In order to do this, the visual system must take into account a great number of

configural cues about what is paint and what is shadow[4,5].

      
Figure 5. Left: the light square in the shadow is the same shade of gray ink as the dark squares outside the

shadow.  Right: the two diamond-shaped regions marked by the arrows are the same white color.



Proceedings of the. SPIE Vol. 4299, pp. 1-12, Human Vision and Electronic Imaging VI, B. E. Rogowitz; T. N. Pappas; Eds. (2001)

6

The importance of context is also shown in the image[5] on the right of fig. 5.  The two regions marked by

arrows are identical; indeed they are simply the color of the white page. However, they appear quite

different, due to the configuration of gray levels and X-junctions around them.  Indeed, it is not even

possible to compare the two regions in terms of albedo. A new perceptual variable, a kind of haziness, has

become apparent. Thus at least two values will have to be used to describe each point in the scene.

When we consider more complex surfaces, the importance of context continues to be apparent. Figure 6

shows a synthetic image of a shiny sphere on the left. On the right is the same sphere with the two

specular highlights removed.  Now the entire sphere looks matte.  Observe that the sense of gloss or

matteness spreads across the entire sphere, and is not restricted to the specularities themselves.  Again, the

perceptual quality at a given location in an image can be influenced by pixels at distant locations.

Figure 6. Left: an image of a shiny sphere, generated by computer graphics.  Right: the same sphere, with

the specularities removed.  The appearance of the entire sphere s surface changes. (Images by Roland

Fleming, after a demonstration by Jacob Beck).

Visual cues often tell us about more than just optical qualities. In particular, the mechanical property of a

material is often expressed in its image. A good example is fabric, which drapes and folds in different ways

depending on how stiff, thick, or elastic it is.  Another example is shown in Figure 7, which depicts two

viscous white substances: hand cream and cream cheese. In both cases, a blob of the material has been

swirled with a spoon.  The hand cream returns to a smooth, even surface, while cream cheese retains the

peaks and valleys.

      

Figure 7. Left: a blob of hand cream and a blob of cream cheese.  Both have been swirled with a spoon.

Right: a flow diagram showing how an image depends on mechanical and optical properties of the object

and the environment.

On the right is a flow diagram showing that how optical and mechanical aspects of the world are combined

with the optical and mechanical aspects of the material to produce an image.  Let us start with a chunk of

material in some initial state.  Its shape is then changed by the outside forces that act upon it over time

(e.g., the swirling by the spoon), as well as the mechanical properties of the material itself  (e.g. elasticity,
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viscosity, etc.).  We can refer to these as the extrinsic mechanics  and the intrinsic mechanics.   The

combination leaves the material in a certain shape.  The material is then illuminated by some distribution

of light in the environment, and it reflects, refracts, or absorbs the light according to its optical properties.

In addition, the observer (or the camera) is positioned at some viewing point in space, looking in a certain

direction with a certain focal apparatus.  The optical properties inherent in the material are the intrinsic

optics,  while the lighting and viewing conditions are extrinsic optics.   Shape, intrinsic optics, and

extrinsic optics combine to form an image. (Of course, there can also be chemical, thermal, and other

processes at work, but the mechanical and optical ones are often the most prominent).

It is impossible to think that the observer can retrieve all of the variables that went into making the picture

look as it does.  In particular, we may have only rough ideas about the extrinsic mechanics (the history of

distortions the blob underwent) and the extrinsic optics (the distribution of lights in the environment).

However, we can do a reasonably good job of guessing the intrinsic mechanics and intrinsic optics of the

materials.  This is fortunate, since the intrinsic qualities are usually those that matter most.

Food photography is an interesting sub-industry within the photography business, and it places a particular

emphasis on material appearance. There are photographers who specialize in food, and stylists who

specialize in optimizing its appearance for the photographers.  The food stylist is in charge of giving the

mashed potatoes the proper thick, moist, warm look, by cooking, shaping, spraying, or whatever is

needed.  The photographer arranges the lights and the camera to capture the look. In preparing the mashed

potatoes, the stylist establishes by intrinsic optics and mechanics (by cooking and mashing), and then uses

extrinsic mechanics to sculpt the potatoes to look a certain way.  The photographer is mainly in charge of

the extrinsic optics: the lights and the camera. Photography catalogs have various supplies to support the

profession of food photography. Here is a sample entry: Trengrove Aqua Gel: Use as is  for a variety of

effects, ranging from water beads, spilled water, melted ice, ice formations, and melted plastic.  Applies

easily to beverage containers to give a natural, cool, refreshing look.   It is wonderful to think that a

natural, cool, refreshing look can come from a jar of gel.

RETURNING TO HABITS

One may think of the mashed potatoes as having a habit: a particular combination of shape and texture that

signifies mashed-potato-ness.  Let us return for a moment to this concept, which was earlier used in the

discussion of rocks and minerals.  The notion of habit is often used in characterizing plants.  On the left of

figure 8  is  a drawing of the typical shape of a pin oak in winter. It is not a shape that can be template

matched, since the particular branches are different for every tree.  It is not a texture either, since there is a

top and a bottom, and a textural quality that changes from one part to another.

On the right are two pictures: a melanoma and a normal mole. They seem to be made of a different kind of

stuff,  and this is apparent because of a combination of their shape, texture, and color. A popular

mnemonic for the visual character of a melanoma is ABCD: Asymmetrical shape; Borders that are irregular

or indistinct; Color that is variable; Diameter greater than 6 millimeters. This too can be thought of as a

habit.

One might argue that the hand cream and cream cheese are characterized by their habits as well. They have

no fixed form, and no constant visual texture. The broad center of a hand cream blob has a different visual

character than the roundly curved boundaries. When everything is assembled into a coherent image, the

hand cream s qualities become apparent.
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Figure 8: Left: the habit of a pin oak. Center and right: A melanoma can be visually distinguished from a

normal mole.  The combination of shape, color, and texture are used to make the diagnosis.

UNDERSTANDING HOW IMAGES ARE MADE

To build a science of material appearance, it is useful to consider work in related areas. I list a few here.

Ecological optics: Given the fundamental physics of materials, one can ask what particular materials are

common in the real world, what forms they commonly take, and what patterns of light tend to illuminate

them.  From these starting points, one can ask how scenes in the world map to images.  This is the

forward problem of how images are made. Vision is the inverse problem of figuring out what made an

image. There has been recent progress in characterizing natural materials in the laboratory [6,7]

3-D computer graphics: A large body of work in computer graphics has been devoted to understanding

reflectance and making things look like they’re made of the right stuff [8,9].  Plastic is easy, but flesh is

hard. It is no accident that the characters in today s blockbuster animations are often plastic toys or hard-

shelled insects.  It is very difficult to make humans; their skin and hair must look just right, and they

must move and deform correctly as well. The degradation of materials is also needed to make them look

natural, and this is a complex problem to simulate[10].

The bottom line for most computer graphics is: does it look right to a person?  Therefore, much of

computer graphics is embedded in a subjective psychophysical feedback loop. This is especially true for the

rendering of materials.  Since physically correct rendering is impossibly expensive, the researchers try out

various tricks and shortcuts, and ask themselves whether it looks right; then they modify the procedure and

look again. Unfortunately, the methods of 3-D computer graphics can be hard to translate into an

understanding of human vision.  The optimization process is occurring a few steps removed from the

image itself, and so it is rarely clear what aspects of the 2-D image are responsible for a given perceptual

impression.

Traditional painting: the old master painters were highly skilled at portraying the materials in the scenes

they painted. They knew how to make a  velvet robe look velvety,  and how to make a silver goblet look

silvery.  This is very difficult to do.  Note that even an amateur can draw a shape well enough for an object

(like a goblet) to be recognized. However, portraying materials realistically is extremely challenging.  Our

visual systems are exquisitely sensitive to the way materials look, and will not be satisfied by imperfect

approximations.  Artists are taught certain tricks, but mostly they just look very carefully and over the

years learn how to replicate the pattern of light in the image.  Unlike researchers in 3-D computer graphics,

the artists work directly with the image data, and therefore may have a great deal of knowledge that could

be helpful for understanding human vision.

2-D computer graphics: In a program like Photoshop, there are a variety of special effects tools for

making beveled objects that appear to made of plastic, metal, rubber, etc. These tools run in real time, and

are based on a set of 2-D image processing tricks rather than on true 3-D material rendering.  Because these
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tricks work with low-level operations rather than with sophisticated 3-D rendering systems, they work near

the level of the image itself. Therefore they may offer interesting insights into human vision, since vision

begins with the image data.

Photography: A studio photographer takes control of light and camera.  With experience, a photographer

learns how to control the way materials look. A raking light will bring out fine surface texture.  A diffuse

light will minimize fine texture and will then to make materials look matte rather than shiny. A hair

light  can be used in a portrait to bring out a glow around the boundary of the head. And so on. By

studying the tricks that photographers know, we may learn the tricks that the human visual system uses in

interpreting the photographs.

Figure 9: Four images created by modifying an original image. (a) The original image of a chrome-plated

sphere. The histogram of pixel intensities (in the sphere image) is shown below. (b) the image after

compressing the grayscale range of the sphere image. (c) The result of blurring the image, reducing the

range, and adding a constant term. (d) The result of blur, more compression and a larger additive term.

.

INFORMATION IN IMAGE STATISTICS

As noted earlier, the problem of material appearance bears some similarity to the problem of texture

perception. Multiple stochastic processes, including the distribution of lights, combine to produce a

particular image of a particular object.  For this reason, it is interesting to manipulate some simple image

statistics of an image and see what happens to the material appearance.

Figure 9(a)  shows an original photo of a chrome-plated sphere. The histogram of pixel values within the

sphere is shown below. It covers a broad range of intensities as would be expected since it is merely

reflecting a distorted image of the world.

In fig. 9(b) the same photograph has been modified by selecting the circular region of the sphere and

compressing the intensity range, so that everything becomes darker. The compressed histogram is shown

below. The resulting image looks like a black shiny sphere, such as a pool ball made out of black plastic.

It should not surprise us that it is possible to make a chrome plated sphere look like a black plastic sphere

since in both cases the dominant reflection is specular, with a different magnitude. (Note that for a real

plastic sphere, the specular reflections would get brighter toward the edges due to the increased efficiency of

Fresnel reflection at grazing angles).

In fig. 9(c) the sphere region s histogram has been shifted upward and a Gaussian blur has been applied to

that region. The sphere now takes on the appearance of brushed or sandblasted metal. Note that for an

actual roughened sphere the blurring will take place as a convolution in the spherical domain rather than

being uniformly applied in the image plane. (Equivalently a space-variant convolution could be applied in

the image domain.) However this example shows that even a simple uniform convolution produces a

reasonable impression of a roughened metal sphere.
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Figure 9(d) shows what happens if we take the image of fig. 9(c) and compress the histogram further in the

direction of white. Now the sphere begins to take on a pearly appearance. This result makes sense if we

consider that a pearl consists of many thin shells of slightly inhomogeneous transparent material, where

Fresnel reflection and scattering can occur across the multiple layers.

The experiments of fig. 9 suggest at least two domains that might useful for characterizing material

appearance. The first, in the image domain, is the shape of the intensity histogram. The second would be

in the frequency domain, where blur and sharpness give us cues about the material being viewed. Space-

domain and Fourier-domain statistics have been widely used in texture analysis. However, in recent years it

has been found that wavelet statistics are more useful than Fourier statistics in characterizing textures.

Heeger and Bergen[11] found that two textures that matched both in terms of pixel statistics and wavelet

coefficient statistics tended to look similar, and others have built on this notion to develop successful

texture synthesis techniques[12,13]. Image statistics have been proposed as useful in understanding the

human perception of materials as well[14].

Ron Dror and I have followed a similar strategy in a machine vision system for characterizing the optical

qualities of surfaces viewed in real world settings[15]. For simplicity, we have concentrated on images of

spheres. Since the environment tends to contain a broad range of luminances and numerous sharp edges, we

expect these properties to manifest themselves in the specular reflections of a sphere. If the sphere has a

finely roughened surface the specularities will be blurred and the high frequency components will be

removed. The diffuse component of the surface will provide a broad, gradually varying additive

component. A shiny black ball will have almost no diffuse component whereas a shiny white ball will

have a great deal. The white diffuse component will tend to serve as a floor that raises the intensities

throughout the ball and simultaneously lowers the contrast ratio of the specular reflections. The specular

component itself will be larger or smaller depending on the refractive index of the material, and whether the

material is metal or dielectric.

Figure 10 shows a flow chart of how we actually have applied these basic ideas for analyzing and

classifying the surfaces of spheres. Ideally we would work in a coordinate system appropriate to the

spherical surface. However, for simplicity in the present work, we take an annulus from our image and

unwrap it into rectangular coordinates. The unwrapped annulus is then analyzed in terms of the statistics of

pixel intensity distributions and the statistics of wavelet coefficient   distributions. These measurements

serve as features that are handed to a pattern classification system such as one using support vector

machines.

        

Figure 10: A flow diagram for estimating the reflectance parameters of a sphere photographed under

unknown lighting. Right: classification results using two measurements.

We have tested this approach using both synthetic and real images. The synthetic images were made using

the Ward model (a variant of the well-known Phong model ) and a set of panoramic illumination images

collected by Debevec[16].  We chose 6 sets of Ward parameters, corresponding to black matte, black shiny,

gray shiny, white shiny, white matte, and chrome. Each sphere type was rendered under the same set of 9

lighting distributions, taken from indoor and outdoor scenes. The lighting conditions were quite varied,

and so the images of a given sphere type appeared quite different from each other. Our hope was that a set
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of features could be found to that would allow the system to ignore  the lighting and classify according to

reflectance parameters.

On the right of fig. 10 is a plot of the categorization possible using only two features, namely, the 10
th

percentile of the intensity histogram and the variance of one of the wavelet subbands.  Even with these two

basic features, the classification is quite good.  Using 6 features, the classification becomes almost perfect,

and is comparable to that shown by humans for this particular set of stimuli.

We performed a similar experiment using pictures of real spheres in real scenes.  We used nine spheres with

different reflectances, and photographed them in various indoor and outdoor locations. Note that the

spheres, being real, did not obey Ward s model or any other simple reflectance model.  This is all right

since the classification procedure does not depend on a model. (This is one reason for preferring a

classification task rather than a parameter estimation task). After training on a subset of the images, we

tested the system with images of familiar spheres in novel environments. Again, with 6 features, the

classifier did about as well as humans.

There is a major limitation, of course: we have only worked with spheres. It should be straightforward to

generalize to other surfaces in which the surface normals are known everywhere, since the pixel values can

be mapped onto a virtual sphere, producing an equivalent sphere image (assuming distant illumination, and

assuming the surface normals include a large range to cover the sphere.) However, this is still quite

restrictive, since in passive vision applications one rarely has knowledge of surface normals.  Nonetheless

we find the results quite encouraging, since they indicate that simple image features can be profitably

employed in characterizing reflectance in unknown lighting.

ANALYSIS — BY - SYNTHESIS

Analysis-by-synthesis is an approach that has been used to estimate parameters in simple polyhedral

images, including shape, lighting, and albedo[17]. In pilot work in my lab, Marshall Tappen is

considering a toy world that includes smooth blobby shapes with Phong/Ward surfaces. The photograph of

fig. 11(a) shows an example: a bath-oil capsule in the shape of a penguin, with a white shiny surface.  We

are exploring an analysis-by-synthesis approach to modeling this and similar scenes.  We assume that the

contour of the penguin is known; in the present case we extracted it by hand, but for simple scenes like

this one it could be automated. We assume a distant point source, and a Ward reflectance model plus an

ambient illumination term.

Figure 11. (a) A photograph of a penguin shaped bath-oil capsule. (b) synthesized penguin image, based

on estimated shape and Ward reflectance parameters. (c) synthesized penguin with synthesized drop

shadow. (c) sphere rendered using the same lighting and reflectance parameters.

Given the contour, we wish to estimate the blob s shape, the light source direction, and the reflectance

parameters.  We inflate the contour into a blobby shape by one of various methods. In this case we use a
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grassfire algorithm to compute distance from the contour, and then apply a smoothing algorithm. This

produces an initial guess for the shape.  We then use heuristics to make initial estimates of the light source

direction and ambient illumination. Given these starting points, we synthesize the predicted penguin

image, and run an optimization routine to find the shape and reflectance parameters that give minimal

squared error.  The result is shown in fig. 11(b).  Although we do not have ground truth, the estimated

shape and reflectances appear to be good.

To make a more realistic replica of the scene, we added a drop shadow, as shown in fig. 11(c). This was

done with a simple trick often used in 2-D graphics programs: we replicated the contour, filled it with

gray, blurred it, and displaced it. We estimated the shadow parameters in a feedback loop.  (Note: the fact

that the shadow is blurred shows that the prior assumption of point source illumination is incorrect;

indeed, the shadow gives information on the size of the extended source. We will impose more consistency

as the work progresses).  Finally, to give a better intuition of the recovered reflectance parameters, we used

them to render the sphere of fig. 11(d).

Although the penguin is just a first step, it offers encouraging possibilities for machine vision.  Within a

restricted domain of scenes, it is possible to retrieve both shape and reflectance parameters.

CONCLUSIONS

The perception of materials is an important area that is still in its infancy The importance of material

appearance is clear, and there are many fields devoted to controlling the way materials look (e.g., fabrics,

food, paint), and in using images to convey material properties (e.g., computer graphics, art, photography).

Mechanical and optical properties are the main ones that humans derive from image information. Recent

work suggests that concepts used in texture analysis may be usefully applied to the problem of material

appearance.
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