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Abstract

Human vision, machine vision, and image coding,
each demand representations that are useful and effi-
cient. The best-established techniques today are based
on low-level processing. Future systems for image
analysis and image coding will tncreasingly use im-
age representations that involve such concepts as sur-
faces, lighting, transparency, etc. These representa-
tions fall in the domain of “mid-level” vision, and
there is accumulating evidence of their importance in
human vision. By representing images with these more
sophisticated vocabularies we can increase the flexibil-
ity and efficiency of our vision and image coding sys-
tems. We are developing systems that decompose im-
age sequences into overlapping layers, rather like the
“cels” used by a traditional animator. These layers are
ordered in depth, sliding over one another and being
combined according to the rules of transparency and
occlusion. Using the layered representation we can
achieve greatly tmproved motion analysis and tmage
segmentation. By applying layers to image coding we
can achieve data compression far betier than MPEG,
and achieve frame-rate independence as a side bene-
fit. Moreover, the image sequence is decomposed in
a meaningful way, which allows flezible image editing
and access.

Introduction

Vision systems and image coding systems have re-
lated tasks. A vision system typically processes image
data to achieve some decision or action, whereas an
image coding system typically seeks to store and re-
trieve image data with as few bits as possible. In both
cases the representations must be both useful and ef-
ficient. Future image coding systems will increasingly
use techniques from computer vision.
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In each case, the central issues hinge on representa-
tion. Efficient image descriptions, which are obviously
important for image coders, are also important for vi-
sion systems, since one wishes to do as much process-
ing as possible using as few bits, CPU cycles, or neu-
rons, as possible. Useful and flexible image descrip-
tions are obviously important to vision systems, but
are also important to image coders, since one wishes
not only to store images but to access them and ma-
nipulate them intelligently, making good use of image
properties. ‘

It is convenient to divide image representations into
three levels: low-level, mid-level, and high-level. Low-
level representations include pixels, subbands, DCT’s,
and the outputs of local operations such as edge de-
tection and motion detection. High-level representa-
tions include full descriptions of objects and actions.
Mid-level representations occupy the ill-defined terri-
tory in between, perhaps containing information about
texture, global motion, surfaces, lighting, and so on
[3, 10]. Mid-level processing is conducted in a set
of hidden languages that we do not yet understand.
Therefore the specification of mid-level vision remains
a matter of research rather than definition.

The languages of low-level processing are fairly well
worked out. Biological vision systems begin by estab-
lishing a multiscale representation that captures local
aspects of orientation, color, motion, etc. Most ma-
chine vision systems that have ambitions of general
utility begin with similar representations. And most
image data compression systems use the related low-
level vocabularies of DCT’s, pyramids, wavelets, etc.,
along with local measurements of motion and color.

The languages of high-level vision must ultimately
include the familiar language of everyday life, by which
we describe the objects and actions in the world. The
difficulty 1s that no one knows how to get there, and no
one will until many hard problems are solved. High-
level vision and high-level image coding have been



demonstrated only in highly constrained domains. For
example, in coding head-and-shoulder shots for tele-
conferencing, the world model consists of faces mod-
eled with a high-level description, plus everything-but-
faces, handled by falling back to a low-level descrip-
tion.

Perhaps the most fruitful area for progress today is
in mid-level vision and image coding. The argument
is as follows: low-level is too easy; high-level is too
hard; mid-level is just right. A good mid-level rep-
resentation should be able to handle arbitrary inputs
and should be able to derive a useful and efficient de-
scription of natural scenes.

Layers

The main representation that we have explored in
our laboratory is “layers.” We think of an image or
image sequence as being built up as a set of over-
lapping 2-D sheets that have varying color, intensity,
and transparency at each point. This offers a vocabu-
lary similar to that used by a traditional cel animator
(e.g., Disney), in which scenes are built from overlying
transparent sheets with painted characters on them.
This vocabulary is also used in computer graphics,
where the transparency of a layer is stored point-by-
point in an alpha channel. Related representations
have been explored by others in the context of both
biological vision and machine vision [2, 11, 13, 20].
Layered coders may regarded as a form of analysis-
synthesis coder [12].

A layered representation, as previously defined [1],

consists of a set of overlapping 2-D layers locally or--

dered in depth, where each layer contains a set of reg-
istered 2-D maps. The intensity map defines the color
and luminance of each point in the layer; the alphg
map defines transparency; the velocity map describes
the motion field by which the layer is warped over
time. There may also be a depth map encoding the
z-coordinate, a bump map encoding the surface nor-
mal, a delta map encoding the rate of change of image
intensity, and other maps as may be convenient. A
schematic example is illustrated in figure 1(a), which
shows a moving hand.

The intensity of a rendered image, I(z,y), is gener-
ated by compositing layers according to the equation:

I(z,y) = Eo(z, y)(1 — (=, 9)) + Er(2, y)i (2, 9)

where F| is the additive component of layer 1, a; is the
alpha channel of layer 1, and E) is additive component
of the background layer, layer 0. Any number of stages
can be cascaded, allowing for any number of layers.
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Figure 1: (a) A layer consists of a set of registered
maps. (b) A layer can extend beyond the viewing
frame.

In principle, the layer may extend indefinitely be-
yond the viewing frame as indicated in figure 1(b). As
the layer moves, new information may become visible
or hidden at the edges of the viewing frame. (The
frame can itself be conceptualized as a layer that is
opaque outside the clear viewing region). The infor-
mation in the layer itself is stable as it moves in or out
of visibility. The velocity field is applied uniformly
to the whole layer. In the hand example, air space
between the fingers moves smoothly with the fingers,
although it is unseen in the rendered image.

The layered vocabulary allows a segmentation that
is fundamentally different from the standard one. For
example, consider figure 2(a), which humans perceive
as a black square occluded by a translucent gray cir-
cle. A standard intensity-based segmentation algo-
rithm would break it into the four pieces shown in
figure 2(b-e). The standard vocabulary does not al-
low for overlap, so the scene must be broken into non-
overlapping jig-saw puzzle pieces. The resulting de-
composition does describe the image data but it fails
to capture many facts that are apparent to a human
observer, e.g., that the circle and square are separate
objects, that the circle is in front of the square, that
the circle is translucent, and that the gray piece in
the middle (figure 2(b)) results from the transparent
overlap of the circle and the square.

One possible layered decomposition of the scene is
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Figure 2: (a) An image showing transparent over-
lap. (b)-(e) an intensity-based segmentation of the
image into jig-saw pieces. (f)-(i) a layered decom-
position of the image into two layers. (j), (k) an
alternate version of layer 1.

shown in figure 2(f-1). There are two layers: a back-
ground layer, denoted layer 0 and a foreground layer,
denoted layer 1. The background consists of a light
gray field with a black square painted on it, as shown
by the intensity map, figure 2(f). The background is
opaque everywhere, as shown by its alpha map, fig-
ure 2(g). The foreground consists of a gray circle,
shown in figure 2(h), which is semi-transparent, as
shown by the alpha map. Qutside the circle region the
alpha map is perfectly transparent, as shown. Thus
within the circle the foreground color is added to the
image and the background color is attenuated. Out-
side the circle, the background is seen unattenuated
and the foreground adds nothing. Note that an alter-
nate version of layer 1, denoted layer 1/, figure 2(j) and
(k), would accomplish the same thing. Since the alpha
map clips everything outside the circle, the intensity
map in the outer region is of no consequence.

The layered vocabulary is overcomplete, and there
are many layered descriptions of the same scene. For
example, the black square could have a layer of its
own, separate from the background, leading to three

layers. Or the entire scene could be relegated to a sin-
gle opaque layer with an intensity map identical to the
observed image. Or the old jigsaw puzzle decomposi-
tion could be replicated within the layered vocabulary.
The choice of a particular layered decomposition can
be based on the task at hand.

Layers are especially useful in dealing with moving
images, because they help solve some problems that
have been classically difficult. The most popular tra-
ditional model for motion (optic flow) has been the
rubber sheet. An image is assumed to be painted on
this sheet at time 1, and then the sheet is smoothly
distorted to produce a new image at time 2. This
model fails in many ways, most notably at occlusion
boundaries, where background information is appear-
ing or disappearing, and in motion transparency, such
as occurs with shadows, specularities, motion blur, fo-
cal blur, etc. These problems can never be solved in
the context of traditional optic flow, and attempts to
merely patch up the old algorithms are doomed to
failure.

The layered approach offers a few key extensions to
the old vocabulary. With layers there can be several
rubber sheets rather than just one, and they can over-
lap each other rather than abutting like jig-saw pieces.
In addition the sheets can be transparent or opaque in
varying degrees as defined by the alpha map. The ex-
tensions sound modest enough, but they make a great
difference in motion analysis.

Figure 3 shows schematically how motion estima-
tion may be treated by different approaches. Fig-
ure 3(a) depicts a set of local velocity estimates across
a raster line of a scene, which might be observed when
a hand moves in front of a background. The faster ve-
locities belong to the fingers, two of which are shown.
The slower velocities belong to the background. Sta-
ble velocity estimation always demands some sort of
smoothing across space, either implicitly or explicitly.
The imposition of a smoothness constraint leads to a
velocity field as shown by the curve in figure 3(a). Un-
fortunately, at the object boundaries the motions from
the background and foreground are mixed, giving spu-
rious velocities that don’t properly correspond to any
moving object. To fix this problem, some algorithms
allow piecewise smoothing, as shown in figure 3(b).
This improves matters but is still unsatisfactory. It
does not capture the fact that the finger velocities all
arise from one global motion and the background ve-
locities all arise from another. In addition it implies
that the velocity field is full of sharp breaks, which is
at odds with the physical fact that everything in the
world is moving smoothly.
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Figure 3: (a) smoothed velocity field. (b) veloc-
ity field with piecewise smoothing. (c) overlapping
velocity fields with mixture estimation.

A better solution is shown in figure 3(c). Using
mixture estimation [6, 7, 17] one can discover that
the finger velocities are part of one smooth motion
while the background motions are part of a second
smooth motion. In this case the two motions have
been fit with straight lines. The discontinuities have
been banished from the motion fields and have instead
been taken care of in the alpha channels, which are
not shown, but which serve to assign support across
space. Thus the representation captures important
properties of the physical world. The hand’s motion
is smooth, and the empty space between the fingers
moves with the hand. The background’s motion is
smooth, and it continues smoothly behind the fingers.
The discontinuities are explained by the opacity of the
foreground object, as they should be.

Once an image is represented in layers, re-
synthesizing the image is easy. Indeed real-time hard-
ware is increasingly powerful and cheap due to the eco-
nomics of the video-game industry, where warping and
compositing are the bread and butter of image synthe-
sis. The hard part, of course, is doing the analysis —
the vision problem. When we embark on the task of

finding a layered representation of an image sequence,
we can be comforted by the knowledge that there is
always one such representation, namely the one that
describes each frame as paint on a single layer, and
accommodates frame differences with delta maps. We
hope, of course, that we can do better, but we always
have this as a fall-back.

Analyzing motion sequences into layers is usually
easler than analyzing single frames, since motion offers
information about segmentation, occlusion, and so on.
Recent work in motion and stereo analysis offers an
array of tools [4, 5, 7, 9, 16, 19] that are quite helpful
in this task.

Video coding experiments

We have used layers to analyze a one-second video
clip of the MPEG flower garden test sequence [17,
18] (see figure 4(a)). This sequence was chosen for
two reasons: (1) it is difficult to code using standard
MPEG coders because of the motion and texture; (2)
it should be easy to encode using layers.

The procedure involves two main steps: (1) Mo-
tion segmentation using mixture estimation with affine
models; (2) layer accumulation using inverse warps
and temporal accumulation. At present we assume
binary alpha maps, i.e. the layers are fully opaque or
transparent at each point.

In the first step, we look for regions that are mov-
ing coherently, where coherent is defined as belonging
to a single affine flow. We begin by estimating lo-
cal flow using a standard least-squares algorithm, and
then perform patchwise affine flow estimation by lin-
ear regression, i.e. we fit planes to the velocity fields.
The results are then clustered in the affine parameter
space using k-means to produce an initial segmenta-
tion of the image. The process is iterated until the
segmentation is stable.

In the next stage we accumulate the pixels that be-
long in a single layer. We inverse warp each frame in
the sequence to bring pixels from a single layer into
alignment, on the assumption that each motion seg-
ment successfully captures the motion of a single layer.
Having aligned all the frames in the sequence we per-
form median temporal filtering in a straight line in
time. Stable pixels are assumed to belong to the de-
sired layer and they are given an alpha value of 1;
other pixels are given an alpha of 0. The process is
repeated to retrieve each layer in turn. The resulting
layers contain information that may be hidden in in-
dividual images, such as the parts of the flower bed
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Figure 4: (a) An original image from the MPEG
flower garden sequence. (b) Three layers derived
from the sequence. (c) Image resynthesized from
the layers.

that were hidden behind the tree, or the parts of the
image that were hidden behind the viewing frame at
various moments.

Figure 4(a) shows a single frame from the original
flower garden sequence; figure 4(b) shows the layered
decomposition; and figure 4(c) shows an image resyn-
thesized from the layers. The synthesized image se-
quence looks quite good.

In this research have used binary alpha maps, which
assume that an object is perfectly opaque or perfectly
transparent at every point. We do not yet know how
to deal with alpha maps that take on intermediate
values between 0 and 1. Such an understanding will be
needed to handle transparency, shadows, motion blur,
etc., and we see it as an important future challenge.

The data rate for the 30 frame clip of the flower
garden can be as low as 600 kbit/sec, when straight-
forward data compression is applied to the layers [8].
An MPEG coder would require some 5 times as much

data for similar image quality. Thus the layered repre-
sentation has the potential of offering major improve-
ments in compression. Of course, one should keep in
mind that this sequence was chosen because it is well-
suited to layered representation, and the same level of
compression may not apply to other image sequences.

A complex video sequence — for example, a bas-
ketball game — will not be as easy to analyze as the
flower garden. Indeed our current algorithms fall apart
when confronted by such inputs. To extend the lay-
ered approach to more complex motions we are devel-
oping more flexible analysis tools. Consider, for ex-
ample, walking figures. A person walking across the
image plane can be modeled as a set of flexible layers,
as shown in figure 5(a). The basic layered vocabu-
lary is the same, but the domain of smooth motions
is different: now we must allow motions more com-
plex than affine, and we must fit them to the com-
plex spatio-temporal pattern of the walker. We have
achieved such an analysis by fitting snakes in XT and
deformable surfaces in XYT [14, 15], and using the
resulting fits to control the warping of the flexible lay-
ers corresponding to body parts. More recently, work
in our lab by David Askey indicates that these flex-
ible layers, combined with the constraints of articu-
lated figures, can lead to good analysis and synthesis
of walkers. Figure 5(b) shows a single reconstructed
frame of a sequence containing a walker. As with the
flower garden sequence, layer images are accumulated
by iteratively estimating motion fields and layer own-
ership. A one second video sequence of this walker can
be coded with only slightly more data than is required
for a single still image. While this sequence is simpler
than a basketball game, it suggests that the layered
vocabulary can be extended to handle a variety of sit-
uations.

In addition to being efficient, the layered represen-
tation allows useful image manipulation. Fig. 5(c)
shows a single frame from the flower garden sequence
in which the walker has been added. In the anima-
tion he is seen to “tip-toe through the tulips.” Having
been assigned the appropriate depth order, the walker
occludes the flower bed and is occluded by the tree. It
is also possible to resynthesize this sequence without
the tree. Because the layered representation breaks
the image data into meaningful chunks, layering can
be a powerful tool for image editing.

The layered representation has the additional ad-
vantage of being frame-rate independent. Note that a
normal video sequence is sampled at 30/60 Hz (NTSC)
or 25/50 Hz (PAL), and the sampling rate normally
places strong constraints on how the sequence is pro-



Figure 5: (a) A walker can be composed of a set of
flexible layers. (b) A frame from a reconstructed
sequence with a walker. (c) The walker strides
through the flower garden sequence.

cessed and stored. By contrast, with a layered rep-
resentation the notion of sampling rate almost disap-
pears. Each layer is deformed smoothly over time,
and one can choose to deform it by an intermediate
amount, thereby synthesizing the frame at any point
in time. Thus frame-rate conversion or slow motion
becomes trivial.

Layered representations will also provide useful ca-
pabilities for image database access. When the flower
garden sequence is decomposed into its layers, each
layer is fairly uniform in properties such as texture,
color, motion, and depth. Thus a search for a flower-
bed texture or a tree-bark texture would be made
much easier with a layered representation, in which
this segregation has already occurred. Similarly the
motion parameters needed to represent a walking per-
son automatically offer compact and informative mo-
tion descriptors that can be used for database search.
One could look for walking motions, or even look for

a particular style of walking, characteristic of the in-
dividual.

Conclusions

Still and moving images will become an increasingly
important data types in the future. Images are more
than mere pixels, and vision techniques can be used
to build image coders that can store, edit, and access
images in useful and efficient ways. Full scale high-
level machine vision remains out of reach, but mid-
level techniques offer a great deal of promise.

Layers offer a powerful representation for mid-level
vision. The layer vocabulary extends the standard
vocabulary of motion analysis to allow multiple over-
lapping motions with transparency. Many of the clas-
sically difficult problems in motion analysis become
tractable within this framework.

Various labs are developing tools that are helpful in
decomposing image sequences into layers. By apply-
ing these tools we can perform robust motion segmen-
tation on sequences involving multiple motions and
occlusions. The layered representation offers frame
rate independence, and may also allow major improve-
ments in video data compression. Applications such
as image editing, special effects, and image database
access will also benefit from mid-level representations
such as layers.
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