
Estimating Intrinsic Component Images using Non-Linear Regression

Marshall F. Tappen Edward H. Adelson William T. Freeman
MIT Computer Science and Artificial Intelligence Laboratory

Cambridge, MA 02139
{mtappen, adelson, billf }@csail.mit.edu

Abstract

Images can be represented as the composition of multiple
intrinsic component images, such as shading, albedo, and
noise images. In this paper, we present a method for estimat-
ing intrinsic component images from a single image, which
we apply to the problems of estimating shading and albedo
images and image denoising. Our method is based on learn-
ing estimators that predict filtered versions of the desired
image. Unlike previous approaches, our method does not
require unnatural discretizations of the problem. We also
demonstrate how to learn a weighting function that properly
weights the local estimates when constructing the estimated
image. For shading estimation, we introduce a new train-
ing set of real-world images. The accuracy of our method is
measured both qualitatively and quantitatively, showing bet-
ter performance on the shading/albedo separation problem
than previous approaches. The performance on denoising is
competitive with the current state of the art.

1. Introduction
An image of a scene can be represented as the composi-

tion of a number of different images. At the image formation
level, the image can be represented as the sum of a noise im-
age and the true image of the scene. The scene image itself
can also be represented as the composition of images that
describe the characteristics of the surfaces in the scene. Re-
search in the area of lightness perception [18, 14, 4, 9, 2, 15]
has modelled the scene image as the composition of a shad-
ing image, which describes the illumination and shape of
the surface, and an albedo image, which describes the re-
flectance of the surface. Figure 1 shows an example of this
shading and albedo image decomposition. The noise, shad-
ing, and albedo images can be viewed as special types of
intrinsic images[3], because each of them represents an in-

Figure 1. An example of how an image of crumpled paper with
scribbling on it can be expressed as the product of two intrinsic
component images, a shading image and an albedo image.

trinsic characteristic of the scene – if the camera is included
as part of the scene. They are a special type of intrinsic
image because the observed image is created directly from
these images using pointwise sums and multiplications. In
this paper, we will refer to these special intrinsic images as
the intrinsic componentsof the observed image.

The ability to decompose an image into its intrinsic com-
ponents is useful because applications involving image un-
derstanding often rely exclusively on one of the intrinsic
characteristics of the scene. For example, recovering the
shape of a surface with shape-from-shading techiques re-
quires image data with no changes in albedo. A pure albedo
image would be useful for graphics applications if the image
is to be altered by changing the color of surfaces.

In this paper, we propose treating the problem of de-
composing an image into its intrinsic components as a non-
linear regression problem. To recover the shading image,
we estimate it directly from the observed image. The high-
dimensionality of images makes standard regression tech-
niques infeasible, so we describe how this regression can be
accomplished using local, low-dimensional estimators. Our
method is an especially significant improvement for recover-
ing shading and albedo images because it avoids the overly-
simplified models and artificial discretizations of the prob-
lem, discussed in Section 3. Unlike previous work in this
area, we demonstrate the improvement of our method quan-
titatively. We also apply our intrinsic component estimation
procedure to a second problem, denoising images, and show
it to be competitive with recently published methods for de-
noising.

While previous methods have also used local estimates
to construct an estimate of an intrinsic component image,
these methods have not addressed the issue of how to handle
uncertainty in the local estimates. In this paper, we demon-
strate how to learn a weighting function that weights the dif-
ferent local estimates in order to produce the best estimate
possible. This significantly reduces the error in the estimates
of the component images.

2. Basic Approach
Viewed as generic non-linear regression, estimating

an intrinsic component image with N pixels is an N-
dimensional regression problem. Even for small images, this
dimensionality is too large to use black-box regression algo-
rithms. To overcome this dimensionality issue, we use local
estimation based on small image patches.

Figure 2. This diagram describes our basic approach to recover-
ing intrinsic component images. In this example, we recover the
shading image of a piece of crumpled paper by first estimating the
horizontal and vertical derivatives of the shading image. The esti-
mate of the shading image is produced by finding the image that
best satisfies these constraints in the least squares sense.

Using local image patches to estimatepixel values for an
intrinsic component may not be feasible. Consider an image
of surface with two large regions of differing albedo. If the
region with darker albedo is larger than the image patch used
to estimate the intrinsic component image, it is impossible
to correctly recover the shading of that area. In the case of
reflectance, the classic Retinex algorithm overcomes this by
making local estimates of theimage derivatives, rather than
the pixel values. These derivative estimates are then used to
estimate the image by solving Poisson’s equation.

We adopt a generalization of this approach, allowing a
richer set of linear filters than just derivatives. Our stepsare:

1. Estimate a set of local linear constraints, such as the
derivatives, using local image data. The estimators
will utilize non-linear regression, learned from training
data.

2. Solve for the image that best satisfies these constraints,
by using a method akin to a pseudoinverse.

Figure 2 shows an example of the process.
If the linear constraints are computed at every point, they

can be thought of as the desired outputs of linear filters ap-
plied to the estimated image. The choice of filters depends
on the image statistics. We want filters that capture and
distinguish the characteristic statistics of the intrinsic com-
ponents. In the case of classic Retinex, the assumption is
that shading images are smooth, while reflectance images
are piecewise constant, so that the processes can be easily
separated in the derivative domain. Since real images are
more complex, we need to learn more sophisticated statis-
tics in order to do the separation. In general, we may choose
to estimate the outputs of any linear operators that capture
relevant statistics.

Our main interest here is in separating albedo and shad-
ing. However, the same approach can be used for many im-
age estimation problems where the statistics of different im-
age classes are distinct. A good example is denoising: we

can apply our technique by training the non-linear regressor
on natural images with and without noise. As we will show,
our results are competitive with state of the art denoising
methods.

3. Previous Work on Recovering Shading and
Albedo

The Retinex algorithm [15] was one of the first ap-
proaches to estimating the lightness of surfaces. Using a
simplified model of intrinsic image statistics, the Retinexal-
gorithm assumes that image derivatives with a large mag-
nitude are caused by changes in the albedo of the surface,
while derivatives with a small magnitude are caused by
changes in illumination. Under this model, a shading im-
age can be constructed by calculating the derivatives of the
observed image, eliminating derivatives with a large magni-
tude, then reconstructing the image [12]. The disadvantage
of this model is that this simple characterization of shading
does not hold for many surfaces.

In [18], Tappen et al. generalize this algorithm by learn-
ing a classifer that labeled each horizontal and vertical image
derivative as either an albedo change or a change in the shad-
ing image. The algorithm collects local color information
and gray-scale information using an AdaBoost classifier. To
disambiguate locally ambiguous areas of the image, this lo-
cal information is propagated along edges in the image using
an MRF. The classifier is trained using examples of shading
and albedo changes.

Training the classifier allows it handle surfaces that vio-
lated the assumptions of the Retinex. However, it also re-
quires presenting examples that areeithershading or albedo
changes. Training a classifier on a set of real images would
require an unnatural division of the image derivatives into
the two classes. In Section 7.2, we show that this can lead to
significant artifacts.

Like these two approaches, our method first estimates the
filtered versions of the intrinsic component image. The first
major advantage of our method over Retinex is that we use
training data to learn to predict the derivatives of the shad-
ing and albedo images, rather than basing the estimates on a
simple model of the world. This enables our method to pro-
duce better estimates of the images. Our model also lacks
the discretization inherent to methods such as [18]. The sec-
ond significant advantage between our work and these pre-
vious methods is the weighting of the estimates. Both of
the previous methods assume that the estimates of the hor-
izontal and vertical derivatives should be equally weighted
in the pseudo-inverse step. In Section 6, we describe how
to learn a function to optimally set the weights of each esti-
mate, downweighting unreliable estimates.

4. Locally Estimating Constraint Values
As described in Section 2, an estimate of an intrinsic com-

ponent image is produced by first estimating filtered versions
of that image. We limit the dimensionality of the estimation
problem by only using a patch of the observed image to es-
timate a particular pixel of the filtered intrinsic component

image.
In order to capture the statistics of real-world surfaces,

the estimator is trained from images of real surfaces and
the corresponding intrinsic component image. Formally,
for each filter, we created a training set ofM pairs,
(o1, c1) . . . (oM , cM), whereoi is a vector created by un-
wrapping a patch of the observed image andci is the value
of the filtered intrinsic component image at the same pixel as
the center of the observed image patch. The estimator,r(o),
is trained to minimize the squared error,E, in the predictions
of ci from oi:

E =
M
∑

i

(r(oi)− ci)
2 (1)

4.1. Using a Mixture of Experts Estimator
With the goal of a simple, yet powerful approach, the

estimator,r(o), is parameterized as a set ofN prototype
patches,p1 . . . pN , a set of linear regression coefficients,
f1 . . . fN , associated with each prototype point, and a scale
factorh. Given an observed image patch,o, the estimate of
the filtered intrinsic component image,r(o), is computed as:

r(o) =

∑N
i=1

(

e−
P

j(p
j
i
−oj)2

)

(

fT
i o
)

∑N
i=1 e−

P

j(p
j
i
−oj)2

(2)

where the superscriptj indexes into the patcheso andpi.
This estimator can be viewed as a Mixture of Experts es-

timator. [13] A prototype patchpi and the corresponding
regression coefficients,fi, can be viewed as an expert that
describes how to predictc fromo for observed image patches
that are similar topi. The actual estimate,r(o), is an aver-
age of these individual predictions, weighted by the distance
from theo to the prototype patch.

We chose to base the estimator on patches taken from the
training set to give the estimator flexibility in capturing the
statistics of the intrinsic component images. Limiting the
number of experts in the estimator is important because of
the computational demands of our approach. Estimating an
intrinsic component image involves estimating pixel values
ateverypixel in the image. The estimator must be computa-
tionally efficient for estimates to be available in reasonable
amounts of time. Fixing the number of patches in the esti-
mator is straight-forward method of controlling the compu-
tation needed to produce estimates.
4.2. Choosing Prototype Patches

Training this Mixture of Experts estimator consists of
choosing theN prototype patches,p1 . . . pN , and the corre-
sponding linear regression coefficients,f1 . . . fN . The pro-
totype patches are added one at a time untilN patches have
been added to the set of prototype patches. This minimizes
the error criterion in a stage-wise fashion by repeatedly
adding an expert, or weak learner, and setting the paramters
for that stage, and thus can be categorized as a boosting al-
gorithm [10]. We refer to this algorithm for choosing the
prototype patches and regression coefficents as ExpertBoost.

Algorithm 1 describes the ExpertBoost algorithm for
adding patches to the prototype database. In Steps 1-6, the

algorithm is initialized by setting the first prototype to bean
arbitrary training sample. The associated linear regression
coefficients are chosen to be the optimal linear regression
from the observations to the ground-truth filter responses,c.
At each iteration in the algorithm, the training example with
the largest error is added as the next prototype in Step 8. The
regression coefficients associated with that prototype is cho-
sen in Steps 9-13 to minimize the squared error between the
new estimates and thec1 . . . cM . To prevent the estimator
from focusing solely on relatively small regions with higher
error, we modified step 8 to occasionally choose the next
expert at random.

We found that the Mixture of Experts estimator produced
good results, while including relatively few training exam-
ples in the estimator. For comparison, in the experiments
detailed in Section 7, we also trained a Support Vector Re-
gression estimator using libSVM [8]. The SVR estimator re-
quired nearly twice as many support vectors to achieve com-
parable prediction performance.

Algorithm 1 ExpertBoost
Require: N , the number of prototype patches to be

added to the model. A set ofM training examples,
(o1, c1) . . . (oM , cm). A scale parameter,h

1: i← 1
2: Choose an arbitrary observation to be the initial proto-

type,p1.
3: f1 ← argminf

∑M
m=1(f1 · om − cm)2

4: for m = 1 . . . M do
5: setri

m to the linear estimate ofcm from om

6: end for
7: for i = 2 . . . N do
8: Add a patch,on, to the prototype database by setting

patchpi = on, wheren = argmaxn(ri
n − cn)2

9: for m = 1 . . . M do
10: dk ← e−

P

j(o
j
m−pj

n)2 , wherep
j
i denotes valuej in

the patch with indexi. We use similar notation for
the observationso.

11: d0
k ←

∑i
l=1 e−

P

j(o
j
m−p

j

l
)2

12: end for

13: Setfi = argminf

∑M
k=1

(

d0

kr
i−1

k
+dk(fT

i ok)

d0

k
+dk

)2

14: for m = 1 . . . M do
15: Updateri

k to be the current estimate ofck from ok.
16: end for
17: end for

4.3. Extending to Alternate Criteria
The ExpertBoost algorithm is not limited to minimizing

the squared error. The error function can be replaced with
other cost functions, such as robust cost functions. This is
done by replacing Step 13 with

fi = argmin
f

M
∑

k=1

g

(

d0
kri−1

k + dk(fT
i ok)

d0
k + dk

)

(3)

whereg(x) is an arbitrary cost function. The Lorentzian [7]
robust cost function is one alternative:

g(x) = log(1 +
1

2
x2) (4)

It is not possible to solve Equation 4 in closed form, so we
minimize it with the non-linear conjugate gradient routine
from the NETLAB package.[16] In practice, this is much
slower than the solving the least-squares problem.

The ExpertBoost algorithm can also be extended to a
classification framework, allowing us to compare with the
approach of [18]. In this case the classifier function takes
the form:

ˆr(pO) = sign

∑N
i=1

(

e−
P

j(p
j
i
−p

j

O
)2
)

bi

∑N
i=1 e−

P

j(p
j
i
−p

j

O
)2

 (5)

whereb1 . . . bN are scalars.
The the prototype patches,p1 . . . pN and the associated

b1 . . . bN are chosen to minimize the exponential loss be-
tween the predicted labels and the ground truth labels. More
information on the exponential loss can be found in [11].
After choosing patchpi, bi is found by solving a quadratic
Taylor series expansion of the exponential loss atbi = 0,
similar to the GentleBoost algorithm [11].

4.4. Taking Advantage of Multiscale Information
Until this point, we have assumed that the image patches

were taken directly from the image. Unfortunately, the di-
mensionality of the patches rises quickly as larger areas of
the image are considered. To work with larger patches of the
image, while avoiding the “curse of dimensionality” [5] and
its problems, we use a multiscale representation of the im-
age patches. To create a multiscale patch, we constructed a
three level Laplacian Pyramid [1] using a five-tap filter, with-
out downsampling between levels. The multiscale patch is
then created by taking a3 × 3 patch from each level of the
pyramid. This multiscale representation allows each patch
to effectively represent a larger area of the image with only
a slighly larger number of dimensions. We also found that
when estimating derivatives, the estimators performed better
when we subtracted the mean of the3× 3 patch taken from
low-frequency residual of the Laplacian Pyramid.

5. Reconstructing the Image
Each of the estimates of the linear functions, such as the

derivatives used in the previous section, can be viewed as
a constraint on the estimated image. The final stage in the
algorithm is to find the image that best satisfies these con-
straints in the least-squares sense.

This can be expressed formally if̂x is defined to be the
shading image predicted from the observationo. For con-
creteness, assume that there are two linear constraints: a
horizontal discrete derivative and a vertical discrete deriva-
tive. Let Cdx andCdy denote the matrices that express the
2-D image convolution with each filter as a matrix. We
assume that the convolution operation produces only those

pixels where the convolution kernel is fully contained in-
side the image, making each of the matrices have less rows
than columns. We also denote the estimated value of each of
these derivatives aŝcdx and ĉdy. The estimated imagêx is
recovered using the Moore-Penrose pseudo-inverse:

x̂ =
(

CT C
)−1

CT ĉ (6)

where

C =

[

Cdx

Cdy

]

and

ĉ =

[

ĉdx

ĉdy

]

It is important to note that the constraints are not lim-
ited to first-order derivatives. The matrixC can be any ar-
bitrary linear combination. For some combination of func-
tions, such as derivatives,C will be a singular matrix. In
these cases, we include a constraint specifying the value of
a small number of pixels. For all of the results shown,x̂ is
found using Gaussian Elimination in MATLAB (the “back-
slash” operator). If computation is an issue,C can also be
solved with the conjugate gradient algorithm or FFT [19].

6. Learning to Assign Weights to Constraints
When constructing the estimate of the intrinsic compo-

nent image, previous systems have assumed that all of con-
straints imposed by the estimated filter responses should be
equally weighted. However, it is likely that some estimates
of the linear functions are more reliable than others. As dis-
cussed in [18], the correct filtered image value is often am-
biguous given only a patch of local image information. Esti-
mates in ambiguous patches should receive less weight than
estimates unambiguous image patches.

In this section, we demonstrate how to learn the proper
weighting of different estimates by learning a function that
weights a filter response according to appearance of the im-
age patch from which it was estimated.

6.1. Forming the Weighting Matrix
Additional knowledge about the reliability of these esti-

mates can be incorporated into the pseudo-inverse step by
adding a diagonal weighting matrix,W :

x̂ =
(

CT WC
)−1

CT Wĉ (7)

Our goal is to constructW so as to minimize the squared
error between the estimated intrinsic component images and
the ground-truth images. We accomplish this by makingW
a function of the observed image,I. We denote this matrix
W (I). The weight assigned to a particular estimated filter
response is based on an image patch from the same loca-
tion in the observed image. If the observed image patch is
similar to patches where estimates are known to be poor, a
low weight is assigned to the filter response. Responses in
patches that are known to be reliable receive high weights.

We denote matrixWi(I) as the weight associated with
estimatori. Each element along the diagonal is denoted as

w
j
i for the jth element along the diagonal ofWi(I). For a

system withI linear filters, the complete weighting matrix,
W , is a block-diagonal matrix withW1(I) . . . WI(I) along
the diagonal.

Given this model for weighting estimates, it is natural to
use prototype patches that parameterize the ExpertBoost es-
timators as the basis for judging the quality of an estimate.
This allows some experts to be flagged as unreliable. We
model the weight of an estimated filter response as a function
of the normalized distance from an image patch surrounding
corresponding location in the observed image to set of pro-
totype patches,p1 . . . pN associated with the estimator:

w
j
i =

N
∑

n=1

(αn
i)

2 e−
P

s(os
j−ps

n)2

∑N
n=1 e−

P

s(os
j
−ps

n)2
(8)

Eachα term is squared simply to ensure that it is not nega-
tive. The coefficientα2 should be close to zero for an expert
that produces poor quality estimates. Hence, filter responses
from patches similar to the prototype defining that estimator
will receive low weight.
6.2. Learning the weights

The weights,α, are found by minimizing the squared er-
ror between the ground truth images,x and the predicted
images,x̂. Using the formulation of̂x in Equation 7, the
mean squared error for a training set ofK images can be
expressed as

K
∑

k=1

(Ak ĉk − xk)
T

(Ak ĉk − xk) (9)

where
Ak =

(

CT WkC
)−1

CT Wk (10)

and ĉk is a vector containing the estimates of the filtered
component images for theith image. The summation is over
theK images in the training set. For brevity, we useWk in
place ofW (Ik), whereIk is thekth image in the training
set.

Lettingz denote this error, the derivative of the error with
respect to a weight coefficientαn

i is
∂z

∂αn
i

=
K
∑

k=1

2 (Ak ĉk − xk)

(

∂Ak

∂αn
i

ĉk

)T

(11)

The derivative∂Ak

∂αn
i

can be derived using the product rule

for matrices. The matrix∂Wk

∂αn
i

is derived using Eq. 8. The
weights can be found using gradient descent to minimize Eq.
9.

7. Experiments
The results produced by our method depend on the choice

of both cost function and the representation of the patches.
In this section, we evaluate the performance of the algo-
rithm using different settings for both of these choices, com-
pare our method against an estimator that relies on the same
heuristic as the Retinex algorithm, and evaluate the benefit
of weighting the filter responses.

(a) Red Channel (b) Green Channel

Figure 3. These images are the red and green channel of a photo-
graph of a piece of paper colored with a green maker. The coloring
can be seen in (a) but not in (b). We use this property to construct
a training set.

7.1. Creating Shading and Reflectance Data
Effectively comparing algorithmic decisions requires im-

ages of real surfaces, along with corresponding shading and
albedo decompositions. Even in controlled settings, with
multiple cameras and light sources, it is difficult to create
shading and albedo images without significant artifacts in
the images. However, we developed a simple method to
create a set of ground-truth decompositions, using color to
measure shading separately from albedo. Figure 3(a) shows
the red channel of an image taken of a piece of paper colored
with a Crayola “Electric Lime-Green” Washable Marker and
illuminated with a standard incandescent light. Both the
markings and the surface shading is visible. The green chan-
nel of that image, shown in Figure 3(b), does not contain any
of these markings. We use this image as the shading image.

In order to collect data with different types of surface
statistics, the training and test sets were collected usingthree
types of paper: office paper, paper towels, and facial tis-
sue. After coloring the paper with a green marker, we used
a Canon 10D in RAW mode, which has an approximately
linear response, to capture each image. The albedo image
was extracted dividing the red and green channels of the im-
age. After finding the shading and albedo images, the data
set was created from the log of these images to make the
problem additive. This dataset provides photgraphs of real-
world surfaces with high-quality shading and albedo image
decompositions. The database will be available for down-
load athttp://www.csail.mit.edu/˜mtappen .

Testing on crumpled paper images is useful because these
images violate the basic assumptions of Retinex. The shad-
ing images have strong edges that would be considered
albedo changes under the Retinex model. To our knowledge,
previous work has not attempted to recover the shading for
images as difficult of these.

7.2. Evaluating performance
To evaluate the performance of our method, we used a

training set of 22 paper images and a test set of 11 paper
images. In addition, we added ten synthetic images, such
as those used in [18], to the training set. We found that our
method generalized to the examples used in [18] much better
with the addition of these images. Four similar images were
also added to the test set. The paper images were all created

Figure 4. The shading and albedo images generated from the observedimage on the left. The different images are created by using different
cost functions, described in the text, to train the estimators of the horizontaland vertical derivatives. We found estimators trained using a
squared-error criterion produced the most visually appealing images.Minus a constant, each of the image pairs add together to form the
observed image. The mean squared errors for the three shading images, from left to right, are 8.4×10

6, 2.4×10
7, 4.8×10

7

using the method described in Section 7.1. The size of all
the images was 127× 127 and each image ranged roughly
between 0 and 255.

7.2.1 Evaluating the choice of the cost function

We first investigated the effect of using either the Lorentzian
error criterion or the squared-error criterion. For both crite-
ria, we used the ExpertBoost algorithm to learn an estimator
for the [-1 1] horizontal derivative of the shading image and
a second estimator for the [-1 1] vertical derivative. We used
the multiscale patches described in Section 4.4 as the repre-
sentation of the input data. The final shading images were
recovered using the method described in Section 5. The es-
timators trained using the least squares cost functions were
each trained using 1000 prototype patches. When training
with the Lorentzian cost function, there was little improve-
ment in the training error after adding 400 prototype patches.
This, coupled with the significant computation required to
compute the regression coefficients, led us to use 400 proto-
type patches for the estimator trained using the Lorentzian
cost function. The scale factor,h in Eq. 2, for these experi-
ments was 384.

To compare our approach with the classification-based
approach described in [18], we converted the estimation
problem into a classification problem by assigning each
derivative in the training set a label of +1 if the magnitude of
the derivative was above a threshold of 2 gray levels, out of
255 possible gray levels. Otherwise, the derivative received
the label -1.

Figure 4 shows an example of the shading and albedo im-
ages produced using the estimators trained under each of the
cost functions. The albedo images were produced by sub-
tracting the estimated shading image from the observed im-
age. Generally, we found the results produced by the least-
squares cost function to the most visually pleasing. The es-
timator trained using the robust cost function generally pro-
duced shading images with more artifactual albedo content.

Algorithm

Training
Error
(×105)

Testing
Error
(×105)

Retinex 36.9 32.7

Basic 5× 5 System 17.3 20.0

Using Multiscale Patches 14.3 16.6

Weighting Estimates 5.61 9.78

Figure 5. The average squared error per image between the ground-
truth shading images and the images produced using different types
of estimators. The lowest error is achieved using multiscale patches
and the weight adjustment method described in Section 6. For both
the training and test set, the error is summed over the whole set.

For the rest of the experiments presented in this paper,
the error criterion is the squared-error. In the shading and
reflectance problem, there is a constant of integration that
cannot be recovered using only derivatives. For this reason,
we subtracted the mean error from each image before com-
puting the error in the image.

7.2.2 Evaluating the Multiscale Patches
To evaluate the usefulness of the multiscale patches, we
trained the estimators described above, but used 5× 5 im-
age patches as the observation vectors instead of the multi-
scale patches described in Section 4.4. As with the multi-
scale patches, we subtracted the mean from each the5 × 5
patches. As shown in Figure 5, using the multiscale patches
decreases the test error by 19%.

7.2.3 Comparing with Retinex
We also compared the estimator trained with ExpertBoost
against the results produced using an estimator based on the
assumption underlying the Retinex algorithm, which is that
derivatives with small magnitudes are caused by shading and
derivatives with large magnitude are caused by changes in
the albedo of the scene. Given the value of a derivative in the

Figure 6. Shading images estimated using ExpertBoost estimators
and Retinex estimators (see Section 7.2.2). The image produced us-
ing the ExpertBost estimators retains little of the scribbling, while
the Retinex estimators are unable to eliminate the scribbling. [The
contrast of each image is set individually to fill the whole range of
image values.]

Figure 7. The ExpertBoost estimators are also able to perform as
well as Retinex on images where Retinex does well, such as this
example from [18].

observed image,δo, the estimate of the shading derivative,
ĉdx is

ĉdx =
δo

1 + ea|δo|+b
(12)

The sigmoid function in Equation 12 acts to set deriva-
tives with large magnitudes to 0.

We found the results produced by our estimators to be
much superior both visually and in terms of squared error.
Figure 6 shows shading images returned by the ExpertBoost
estimators and the Retinex estimators. Much more of the
scribbling is left over in the images found using the Retinex
estimators than in the images found with the ExpertBoost
estimators. This is corroborated by the differences in error.
As shown in Figure 5, the error in the test images produced
using the Retinex estimators is over twice the error in the
images produced using the ExpertBoost estimators.

The ExpertBoost estimators also performs well on images
where Retinex does well, such as the image shown in Figure
7. In this image, the arm of the girl has less shading in the
image produced by the ExpertBoost estimators than in the
image produced with the Retinex estimators.

7.2.4 Evaluating Weighting the Estimates
Using the same training set and constraints described in Sec-
tion 4.3, we used optimized Eq. 9 using a basic gradient
descent algorithm. Similar to the “bold driver” method [6],

the algorithm decreases the step size when the error rises in-
stead of falls. The weights were all initialized to 1, which is
equivalent to the set-up in Section 7.2.2 and the third row of
Figure 5. As seen in the fourth row of Figure 5, optimizing
the weights decreases the error rates achieved using just the
multiscale patches by 37%. This can also be seen qualita-
tively in Figure 8. The albedo image found using weighted
derivative estimates, shown in Figure 8(c) appears much flat-
ter than the albedo image recovered without weighting the
derivative estimates, shown in Figure 8(b).

(a) Ground Truth
Albedo Image

(b) Estimated Albedo
without Adjusting
Weights

(c) Estimated Albedo
after Adjusting Weights

Figure 8. These images demonstrate the benefit of adjusting the
weights when reconstructing the image. After adjusting the
weights, the reconstructed albedo image, shown in (c), appears
much flatter. To enable better comparison, the contrast of these
images is different than the contrast in Figure 4.

8. Application to Denoising
To demonstrate the ability of our method to generalize to

other types of intrinsic components, we trained our system to
estimate a scene image from an observation corrupted with
Gaussian white noise. For this application, the intrinsic com-
ponents are the clean image and the noise. For denoising, we
obtained the best results by using six filters as the basis for
the system: two first derivative filters, three second deriva-
tive filters, and a Gaussian filter with standard deviation 1
that was truncated to a3× 3 filter.

We trained the estimators using a set of 64 images taken
from the Berkeley Segmention Database. The images were
scaled to one-half their original size, cropped to size 128×
128, and added to a Gaussian white noise image with a stan-
dard deviation of 10. The ExpertBoost algorithm chose 2400
prototype patches for each estimator. The estimators still
performed well when fewer prototype patches were used.

For evaluation, we used a set of 40 test images from the
Berkeley database. Each of these images was processed in
the same manner described above. For comparison, we used
the Field of Experts code provided by Roth et al. [17], which
has achieved results close to the best-published results for
denoising. As shown in Table 1, our method is competitive
with the Field of Experts, although the PSNR, computed in
the same manner as [17], of the results from the Field of Ex-
perts algorithm is about 0.2 dB higher. The primary differ-
ence between the results of the two algorithms appears to be
in the low spatial-frequency bands of the images. The sec-
ond column of Table 1 shows the PSNR of images created
by high-pass filtering the results from the two algorithms.

Figure 9. An example of using our method for denoising. The image on theleft has been corrupted with white Gaussian noise (σ = 10).
The results produced by our method are competitive with the recent Field of Experts Model.

Algorithm PSNR PSNR of High-Pass
Filtered Image

Field of Experts 32.46 34.58
Intrinsic Components 32.26 34.51

Table 1. The PSNR in dB of denoised images produced by our
method and the Field of Experts algorithm. The second column
compares the PSNR of high-pass filtered versions of the results.

For these images, the PSNR is almost identical. As shown
in Figure 9, the results are also visually similar. Using the
weight adjustment technique described in Section 6 gave the
system a small 0.06 dB increase in the PSNR. We expect
that applying our algorithm at multiple scales would lead to
further increases in the PSNR.

9. Conclusion
An intrinsic component image describes intrinsic char-

acteristic of a scene, such as the shading or albedo, as an
image. An image can be modelled as the composition of a
scene’s intrinsic component images. In this paper, we have
described a method for estimating the intrinsic component
images of a scene from a single image. We estimate an in-
trinsic component by first estimating a set of local linear con-
straints, such as derivatives, from patches of the observed
image. The component image is then found by solving for
the image that best satisfies these constraints. We have also
introduced a novel method that enables accounts for the un-
certainty in the estimates of the constraints when solving for
the estimated intrinsic component.

The effectiveness and flexibility of our method enable it
to be used for both denoising images and estimating shading
and albedo images. To demonstrate our method’s effective-
ness we have introduced a new set of real-world albedo and
shading images. This data set will be made publicly avail-
able. On this set, which is more difficult than those used
previously, our method is found to outperform previous ap-
proaches, both the classification approach of [18] and an es-
timator based on the same assumptions as Retinex.

Our method for computing intrinsic components can also
be applied to image denoising by splitting the noisy image
into a clean image and a noise image. The intrinsic compo-
nent method performs comparably to state of the art methods
for denoising.

Acknowledgments
This work was supported by a grants from Shell Oil, the

National Geospatial-Intelligence Agency, NGA-NEGI, and

the Nippon Telegraph and Telephone Corporation as part of
the NTT/MIT Collaboration Agreement.
References
[1] E. H. Adelson and P. Burt. A multiresolution spline with ap-

plication to image mosaics.ACM Transactions on Graphics,
2(4):217–236, 1983.

[2] E. H. Adelson and A. P. Pentland. The perception of shading
and reflectance. In D. Knill and W. Richards, editors,Percep-
tion as Bayesian Inference, pages 409–423. Cambridge Uni-
versity Press, New York, 1996.

[3] H. G. Barrow and J. M. Tenenbaum. Recovering intrinsic
scene characteristics from images. In A. Hanson and E. Rise-
man, editors,Computer Vision Systems, pages 3–26. Aca-
demic Press, 1978.

[4] M. Bell and W. T. Freeman. Learning local evidence for shad-
ing and reflectance. InProceedings International Conference
on Computer Vision, 2001.

[5] R. E. Bellman. Adaptive Control Processes. Princeton Uni-
versity Press, 1961.

[6] C. M. Bishop.Neural Networks for Pattern Recognition. Ox-
ford University Press, 1995.

[7] M. J. Black and P. Anandan. Robust dynamic motion estima-
tion over time. InIEEE CVPR, pages 296–302, 1991.

[8] C.-C. Chang and C.-J. Lin. LIBSVM: a library for
support vector machines, 2001. Software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[9] W. T. Freeman, E. C. Pasztor, and O. T. Carmichael. Learning
low-level vision. International Journal of Computer Vision,
40(1):25–47, 2000.

[10] J. Friedman. Greedy function approximation: a gradient
boosting machine.Annals of Statistics, 29:1180, 2001.

[11] J. Friedman, T. Hastie, and R. Tibshirani. Additive logis-
tic regression: A statistical view of boosting.The Annals of
Statistics, 38(2):337–374, 2000.

[12] B. K. P. Horn. Robot Vision, chapter 9. MIT Press, Cam-
bridge, Massachusetts, 1986.

[13] R. Jacobs, M. Jordan, S. Nowlan, and G. Hinton. Adaptive
mixtures of local experts.Neural Computation, 3(1):79–87,
1991.

[14] R. Kimmel, M. Elad, D. Shaked, R. Keshet, and I. Sobel. A
variational framework for retinex.International Journal of
Computer Vision, 52(1):7–23, 2003.

[15] E. H. Land and J. J. McCann. Lightness and retinex theory.
Journal of the Optical Society of America, 61:1–11, 1971.

[16] I. Nabney. Netlab neural network software.
http://ncrg.aston.ac.uk/netlab/index.php.

[17] S. Roth and M. Black. Field of experts: A framework for
learning image priors. InIEEE CVPR, volume 2, pages 860–
867, 2005.

[18] M. F. Tappen, W. T. Freeman, and E. H. Adelson. Recovering
intrinsic images from a single image.IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2005.

[19] Y. Weiss. Deriving intrinsic images from image sequences. In
Proceedings International Conference on Computer Vision,
Vancouver, Canada, 2001. IEEE.

