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ABSTRACT 

Images have characteristic statistics that can be characterized in terms of the responses of wavelet or Gabor-like filters. 

There has been a great deal of interest in the fact that images have sparse (kurtotic) statistics in the wavelet domain, with 

implications for efficient image encoding in biological and artificial systems. If we set aside the issue of efficiency, we 

are still left with the problem of seeing. We have been studying the ways in which filter statistics can reveal useful in-

formation about surfaces, including albedo, shading, and gloss. We find that odd order statistics such as skewness are 

quite useful in extracting information about reflectance and gloss, and we also find evidence that humans make use of 

this information. It is straightforward to compute skewness with physiological mechanisms. 

 

 

1. INTRODUCTION 
 

It is a matter of everyday experience that we are able to visually judge surface properties such as color, lightness, rough-

ness, and gloss, and can often estimate complex properties such as softness or slipperiness. Moreover we can usually tell 

what things are made of, e.g., wood, metal, or cloth. We are highly skilled at evaluating the appearance of materials, 

which is why there are large industries devoted to controlling that appearance. Major parts of our economy are devoted 

to the surface appearance of skin, hair, food, clothing, furniture, and so on. Presumably our finely honed perception 

evolved for practical purposes, such as choosing a mate, choosing food, or choosing where to place our next footstep. 

Given the ubiquity of material judgments, and their importance to our lives, it is surprising that so little is known about 

them. Recently a few labs, including our own, have been making progress by combining psychophysical observations 

with ideas taken from machine vision, computer graphics, and computational neuroscience. This work links up with the 

problems studied in the field of “natural image statistics,” in which one characterizes the distributions of various simple 

image properties such as filter outputs. 

Researchers in human and machine vision often make the simplifying assumption that the world is made of Lambertian 

surfaces. But Lambertian shading looks quite artificial, and replicating the qualities of natural surfaces has attracted 

much attention in computer graphics (Glassner, 1995).  Recently, the topic has been getting attention in computer vision, 

notably in the development of databases with the bidirectional reflectance distribution functions (BRDF’s) of natural 

surfaces (Dana et al., 1999).  

 

Figure 1: A glossy sphere under three different illuminations 
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We might use the term “rich surface perception” to refer to the perception of the complex surfaces of the real world, 

viewed in the complex illumination of everyday life. There is a richness in the information present in the image, a rich-

ness in the material qualities in the surface itself, and a richness in the perceptual qualities that are extracted by the visual 

system. Ultimately one would like to understand what is going on when we look at the skin on someone’s forehead and 

notice that it is a bit pale, slightly moist, and showing signs of aging. This is too much to do all at once, but it is good to 

keep an ambitious endpoint in mind. 

The appearance of an object depends on the following: its shape, its optical properties, the distribution of light falling on 

it (the illumination), and the point of view from which it is observed.  (These are exactly the things that must be speci-

fied if an object is to be rendered in a computer graphics system). Point of view can be simply described, but the other 

factors can be quite complex, and their interaction to produce the image can be even more complex.  Therefore it is wise 

to study some specific problems that bring in some richness, but not too much. 

We have looked at the problem of the perception of glossy spheres in both human and machine vision (Dror et al, 2001; 

Fleming et al., 2003). We restricted ourselves to spheres with uniform reflectance (e.g., with a single color and gloss 

over the surface). By using spheres, we set aside the problem of shape: all spheres project to circles in the image, and so 

all information about the surface is contained in the distribution of light within that circle. We did not restrict ourselves 

to point source illumination. This is important, as our most interesting findings depend on the use of rich real-world il-

lumination. 

Figure 1 shows three images of the same sphere under different illuminations.  On the left is point source illumination; in 

the middle is outdoor (natural) illumination; on the right is indoor (man-made) illumination.  The two images with real 

world illumination were synthesized in Radiance (Ward, 1994), using panoramic illumination data gathered by Debevec 

(Debevec, 1998). The point source illumination, which is conceptually simple, leads to a rather weak sense of the surface 

reflectance.  The real world illuminations, whether outdoor or indoor, are quite complex, and lead to compelling percepts 

of gloss.  It is interesting that the richness of the illumination seems to aid the perceptual task rather than hindering it. 

When we speak of the ability to judge gloss, we are in 

effect speaking of gloss constancy: the ability to tell the 

gloss parameters of a surface regardless of its shape or 

the illumination conditions. In order to quantify this 

notion, we have utilized a technique of asymmetric 

gloss matching (asymmetric in the sense that two ob-

jects can look substantially different, yet be judged to 

be equally glossy).  A given synthetic object is rendered 

with a variety of gloss parameters, and it is used to 

match another object. 

The most popular parametric model for surface gloss in 

computer graphics is the Phong model, which has three 

parameters (in the achromatic case): the amount of dif-

fuse reflectance (albedo), the amount of specular reflec-

tance, and the width of the specular highlight.  The 

width of the highly is implicitly attributed to the rough-

ness of surface at a microscopic scale.  We used a vari-

ant introduced by Ward (Ward, 1992), which corrects 

some of the physically unrealizable aspects of the 

Phong model. We placed virtual spheres in a variety of 

illuminations.  Each illumination was, in effect, a pat-

tern on a hollow sphere of infinite radius; this is known 

as an environment map or illumination map in com-

puter graphics. 

After rendering the spheres, we placed them against a background of random checks, which was intentionally out of fo-

cus to give the impression that the spheres were floating at a distance from the background.  An array of such images is 

shown in Figure 2. The background checks included a range of color and luminance in order to provide consistent and 

articulated anchoring for the stimuli. The same background was used for all the stimuli.   

 

Figure 2: A set of spheres with varying gloss parameters. 
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Although the background did not correspond to the actual environment in which the rendering occurred, subjects were 

generally unaware of the inconsistency, and they found it 

easy to judge the reflectance properties of the sphere.  We 

varied two parameters: the amount of specular reflectance, 

and the roughness of the surface (i.e., the blur of the specu-

lar highlights). We did this within the context of the percep-

tual space described by Pellacini et al. (2000). A test sphere 

and a match sphere were presented side by side.  The sub-

ject adjusted the parameters of the match sphere to have the 

same apparent gloss as the test sphere.  (All of the match 

sphere images were precomputed to allow real time interac-

tive adjustment).   

Figure 3 shows the results for one subject.  The test sphere 

and the match sphere were rendered under different illumi-

nation maps, and the subject had to adjust the two spheres 

to have the same gloss.  This subject was able to perform 

the task fairly well for both the amount of specular reflection (left) and the roughness (right). 

There is an inherent ambiguity in this task, because a smooth sphere in a blurry environment looks the same as a rough 

sphere in a sharp environment (Ramamoorthi & Hanrahan, 2001).  Under the right assumptions, this is a complete ambi-

guity: in both cases the environment map has effectively been convolved with a blur function, and it is impossible to tell 

whether the blur was already in the environment before it was reflected off the sphere surface.  Not surprisingly, if sub-

jects are given a sphere rendered in an environment that is blurry, they will incorrectly attribute some of the blur to the 

surface, and this leads to a systematic bias in their matches.  However, it is interesting that most real-world illuminations 

have enough information to prevent this bias. 

What aspects of the visual environment are important to supporting gloss constancy?  Figure 4 shows a sphere rendered 

three environments.  The first is an indoor environment.  The second is a collection of point sources.  The third is 1/f 

noise. It is interesting that the real-world environment gives a much better sense of the surface than the two synthetic 

environments. Most interesting is the fact that 1/f noise does poorly even though it has the same spectrum as natural 

scenes.  (Note: since 1/f noise is normally defined on a plane, not a sphere, we synthesized environments using spherical 

harmonic spectra rather than Fourier spectra.).   

To quantify the quality of gloss perception, we had subjects make matches between various environments and a single 

standard real-world environment, and measured the accuracy. Figure 6 shows the results, expressed as RMS error, for 8 

real-world environments (lighter bars) and 5 synthetic environments (darker bars), for the judgments of the roughness 

parameter.  The errors were much greater for the synthetic scenes than for the real-world scenes, with one exception: the 

extended rectangular source. 

The error values in such experiments can have two sources, which may be illustrated by the binned scatter plots of 

Figure 5. The lighter squares have more counts in their bins. Figure 5(a) shows the pooled data over all subjects for the 

 

Figure 3: Subjective matches of reflectance parame-

ters between spheres in different illuminations. 

 

Figure 4 : A shiny sphere rendered in three environments: an indoor scene, a set of point sources, and a surround of 1/f noise. 
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estimates of reflectance Uffizi environment, while Figure 5(b) shows it for 1/f noise.  The Uffizi case shows a systematic 

bias, but a reasonably consistent set of judgments.  The 1/f noise case shows a disorganized pattern with great variability, 

indicating that the subjects had difficulty making the judgment.  These two aspects of the errors are both informative. 

The systematic bias helps us determine what makes a reflected pattern look more or less glossy.  The variability of the 

judgments can tell us whether subjects have a strong and consistent impression of the gloss parameters. 

 2. CUES FOR GLOSS 

What cues are humans using in judging gloss?  We can reject a number of hypotheses already. It is not just the spectrum 

of the reflected pattern, because 1/f noise has the same spectrum as natural images, and its spectrum is modified by the 

reflection in the same way as images are.  We have also examined the matches for various illuminations, and have found 

that we can reject a variety of simple features such as the luminance of the brightest point, or the sharpness of the sharp-

est gradient.  We can reject a variety of features (e.g., the steepest gradient, or the power spectrum) by considering the 

case of spheres with reversed contrast, as shown in Figure 7.  This sphere 

does not look shiny at all; the dark spots seem to be marks or stains on the 

surface.  Note that this image is physically realizable, since it is what would 

be seen if the shiny sphere were rendered in an inverted environment.  How-

ever, the environment in which we live usually has a few bright spots (e.g., 

light sources), rather than a few black spots against an otherwise luminous 

background. 

The critical point is that the appearance of glossy surfaces depends on the 

appearance of the surrounding world.  Gloss perception is only possible be-

cause this world has certain visual characteristics.  The characteristics are 

only statistical, but apparently the statistics are reliable enough to allow hu-

mans to estimate gloss under a variety of situations.  Humans are implicitly 

aware of these stable aspects of the world, at least as they are expressed in 

the patterns seen reflected in glossy surfaces. 

The statistical nature of the problem suggests that there may be useful analo-

gies to the problem of texture perception. We can think of the three squares 

in Figure 8 as being three samples from a random process that makes patches of random noise with certain parameters.  

Each sample is completely different at the pixel level, but there is a visual quality that they all share. Likewise, we can 

think of the three sphere images below as three samples from a random process that makes images of mirrored spheres.  

Again, each image is completely different at the pixel level, and again, there is some visual quality that they all share.  

For both the textures and the spheres, these qualities are statistical. There is no template that can be used to match a tex-

ture in the same way that there can be for a letter “A”. 

 

Figure 5: Binned scatterplots of the matches made with a 

real world environment and a synthetic one. 
 

Figure 6: Errors in gloss matches for a variety of 
real-world and synthetic illuminations. 

 

Figure 7: A glossy sphere shown in 

inverted contrast. 
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When Julesz began studying texture perception, he used arrays of random checks rather like the ones in Figure 8. He 

proposed (Julesz, 1962) that humans responded to 

first and second order pixel statistics, and that 

two textures that were matched up to second or-

der statistics would be matched in textural ap-

pearance.  It turned out that this didn’t work, and 

Julesz proposed an alternative approach based 

“textons,” (Julesz, 1981) but these were never 

formalized.  Nonetheless the notion of texture 

perception as the estimation of statistical parame-

ters seems to be correct. 

There have been a number of important psycho-

physical models of texture perception based on 

banks of Gabor-like linear filters.  Many of these 

models can be thought of as measuring the local 

energy in multiple bands and performing various 

non-linear interactions between the outputs (e.g., 

Malik & Perona 1990; Bergen & Landy 1991). 

An important advance was described by Heeger 

and Bergen (1995). This paper was nominally 

about texture synthesis. It showed how to make a new sample of texture that resembles a given sample -- for instance, 

given some wood grain, make some more wood grain.  

Heeger and Bergen developed a texture metric (i.e., a 

function that describes the perceptual distance between 

two textures), and a method of modifying a given tex-

ture so that it is more similar to another texture. By 

iterating this procedure, they could start with a noise 

texture and force it to move to a desired position in 

texture space. Insofar as the metric was correct, the new 

texture should look similar to the original.  When pre-

vious texture models were used in this way, they failed 

badly. Heeger and Bergen did much better by matching 

the full histograms of wavelet subbands (rather than 

just the variances), as well as the full histograms of 

pixel luminances. These two sets of constraints were far 

more successful than those in the traditional texture 

models. Since then, other papers on texture analysis and synthesis have continued the theme (Zhu et al., 1997; Portilla & 

Simoncelli (2000)). 

In broad terms, the texture analysis/synthesis process of these papers can be described as follows: Run a lot of filters 

over the image, do some non-linear things to them, and measure a lot of statistics on the outputs. Also measure statistics 

on the pixel values themselves. Put all these numbers (the “features”) into a big feature vector.  Synthesize another tex-

ture that has a similar vector and you will hopefully have a similar looking texture.  When you choose the right textural 

features (the ones that matter to humans), you get textures that look the same to humans.  Figure 9 shows an example of 

an original texture, and a synthesized texture, using the method of Portilla and Simoncelli (2000), which involves joint 

statistics. 

The problem of gloss perception under real world illumination has a similar statistical character to the problem of texture 

perception, it is interesting to perform some simple “textural” modifications of some glossy images, to see what happens 

to the appearance. Figure 10(a) shows an original photo of a chrome-plated sphere. The histogram of pixel values within 

the sphere is shown below. It covers a broad range of intensities as would be expected since it is merely reflecting a dis-

torted image of the environment.  

 

 

Figure 8: Top: three samples of a random texture. Bottom: three 

samples of chrome spheres. 

 

Figure 9: Left: A sample of raffia texture from the Bro-

datz database. Right: A synthetic sample of texture gener-

ated by Portilla and Simoncelli’s algorithm, with match-

ing textural parameters. 
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In Figure 10(b), the same photograph has been modified by selecting the circular region of the sphere and compressing 

the intensity range, so that everything becomes darker. The compressed histogram is shown below. The resulting image 

looks like a black shiny sphere, such as a billiard ball made out of black plastic. It should not surprise us that it is possi-

ble to make a chrome plated sphere look like a black plastic sphere since in both cases the dominant reflection is specu-

lar, with a different magnitude. 

In Figure 10(c) the sphere region’s histogram has been shifted upward and a Gaussian blur has been applied to that re-

gion. The sphere now takes on the appearance of brushed or sandblasted metal. Note that for an actual roughened sphere 

the blurring would take place as a convolution in the spherical domain rather than being uniformly applied in the image 

plane, but this physically incorrect blur still gives a good impression.  

Figure 10(d) shows what happens if we take the image of Figure 10(c) and compress the histogram further in the direc-

tion of white. Now the sphere begins to 

take on a pearly appearance. This result 

makes sense if we consider that a pearl 

consists of many thin shells of slightly in-

homogeneous transparent material, where 

Fresnel reflection and scattering can occur 

across the multiple layers.  

The experiments of Figure 10 suggest at 

least two domains that might useful for 

characterizing gloss. The first, in the image 

domain, is the shape of the luminance his-

togram. The second would be related to 

spatial frequency, where blur and sharpness 

give us cues about the material being 

viewed. Recall that Heeger and Bergen 

found it necessary to constrain their tex-

tures both in terms of subband statistics and 

in terms of luminance statistics.  

Encouraged by these observations, we built a machine vision system for characterizing the optical qualities of surfaces 

viewed in real world settings (Dror et al., 2001). Figure 11 shows a flow chart of how we applied these basic ideas for 

analyzing and classifying the surfaces of spheres. For simplicity we took an annulus from our image and unwrapped it 

 

 

Figure 10: Four images created by modifying an original image. (a) The original image of a chrome-

plated sphere. The histogram of pixel intensities (in the sphere image) is shown below. (b) the image 

after compressing the grayscale range of the sphere image. (c) The result of blurring the image, reduc-

ing the range, and adding a constant term. (d) The result of blur, more compression and a larger additive 

term. 

 

Figure 11: Flow diagram for extracting statistical features from an 

image of a sphere. 
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into rectangular coordinates. We then built a wavelet pyramid from the image.  We derived statistics from the histograms 

of the wavelet subbands and also from the raw 

pixel luminance values. These measurements 

were used as features that were handed to a 

pattern classification system.  We trained the 

system by showing it multiple examples of a 

finite set of spheres, viewed in multiple real-

world environments.  We did this with real 

photos of real spheres, and also with synthetic 

images of spheres rendered using panoramic 

data from real environments.  For each image 

in the sample, we measured a set of feature 

vectors and attached the known label (e.g., 

“gray shiny”).  The question was whether the 

system could learn to recognize a gray shiny 

sphere regardless of which environment it was 

in.  That is, we tested for gloss constancy un-

der variation in illumination conditions. 

The features were chosen experimentally.  

Figure 12 shows the results for two particular 

features.  The classification boundaries were done with a support vector machine, but the main point of interest here is 

the feature space itself. (Note that for better performance we used as many as 5 dimensions, but it is easier to visualize 

just two). 

On the x-axis is the 10th percentile of the pixel luminance values within the sphere.  On the y-axis is the variance of the 

second finest horizontal subband. The y-axis is basically a measure of spectral power in a high frequency band, and in 

some sense it is a stand-in for overall sharpness. There is nothing magic about this particular subband.  The x-axis is 

more interesting.  The 10th percentile of the luminance histogram tells us how dark the dark pixels tend to be.  We had 

no preconceived idea that this would be a useful thing to measure, but it turns out to be quite diagnostic. For instance, it 

turns out that a chrome-plated sphere has a lot of very black pixels, and its 10th percentile score is about the same as that 

for a black matte sphere.  The reason is that the world contains black objects, or regions that are in shadow and so appear 

black, and these are reflected in the mirrored surface.  If the surface was not mirror-like, or if there was a diffuse compo-

nent to the reflectance, then the blackness would be diluted, raising the floor of the histogram. 

The two-component feature space of this diagram suggests a heuristic: for something to look chrome-like, it should have 

a lot of sharpness and blackness.  It turns out that this heuristic is known and used by artists.  

We have found it useful to look at surfaces with complex “mesostructure” (medium scale bumps and dips) like the two 

images of the sculpture shown in Figure 13. These are both renderings from the same 3D surface of a statue of St. Mat-

thew. Indeed, the two images are based on a single 

rendering, the only difference being that the one on 

the left was put through an accelerating non-linearity 

(i.e., a lookup table), while the one on the right was 

put through a compressive non-linearity. This simple 

manipulation alters the skewness of the luminance 

histogram and greatly alters the appearance of the sur-

faces. 

For surfaces like these, skewness can be quite infor-

mative; dark glossy surfaces tend to have high skew-

ness and light matte surfaces can have low or negative 

skewness. It is often useful to measure such quantities 

locally. It turns out that local skewness can be com-

puted quite readily with filters such as those found 

early in the visual system. 

 

Figure 12: Classification of sphere images based on two features. 

Figure 13: Two renderings of a sculpture with different 

skewness (courtesy Digital Michaelangelo Project). 
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Skewness, which characterizes the asymmetry of a distribution, is classically defined as the normalized third moment. 

However, there are other definitions of skewness, and we have no reason to think that this one is privileged. The point is 

to look at the balance between the positive tails and negative tails. It is the outliers that get greatest weight here, because 

the outliers are especially informative. Very bright points tend to be specular highlights; very dark points tend to be 

shadows, and so positive and negative outliers have quite different meaning. 

We find evidence for mechanisms in human vision that respond selectively to positive or negative skewness. For exam-

ple, we find a skewness aftereffect. After adaptation to a pattern of random dots, a surface subsequently viewed will 

have an altered appearance. After adapting to a positively skewed pattern, the surface will look lighter and less glossy 

than after adapting to a negatively skewed pattern (Motoyoshi et al 2007). 
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